Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains

被引:24
作者
Kondratiev, V
Liskevich, V
Moroz, V
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Moscow MV Lomonosov State Univ, Dept Math & Mech, Moscow 119899, Russia
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2005年 / 22卷 / 01期
关键词
superlinear elliptic equations; cone-like domains; positive solutions; nonexistence; asymptotic behavior of solutions;
D O I
10.1016/j.anihpc.2004.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of the existence and nonexistence of positive solutions to the superlinear second-order divergence type elliptic equation with measurable coefficients -del(.)a(.)delu = u(P) (*), p > 1, in an unbounded cone-like domain G subset of R-N (N greater than or equal to 3). We prove that the critical exponent p*(a, G) = inf{p > 1: (*) has a positive supersolution at infinity in G} for a nontrivial cone-like domain is always in (1, N/N-2) and depends both on the geometry of the domain G and the coefficients a of the equation. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:25 / 43
页数:19
相关论文
共 39 条
[1]  
Agmon Shmuel, 1983, Methods of functional analysis and theory of elliptic equations, P19
[2]   First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains [J].
Ancona, A .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 72 (1) :45-92
[3]  
[Anonymous], CAMBRIDGE STUDIES AD
[4]  
[Anonymous], 1989, DIFFER INTEGRAL EQU
[5]   ON POSITIVE SOLUTIONS OF EMDEN EQUATIONS IN CONE-LIKE DOMAINS [J].
BANDLE, C ;
ESSEN, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (04) :319-338
[6]   ON THE EXISTENCE AND NONEXISTENCE OF GLOBAL-SOLUTIONS OF REACTION-DIFFUSION EQUATIONS IN SECTORIAL DOMAINS [J].
BANDLE, C ;
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 316 (02) :595-622
[7]  
Berestycki H., 1994, Topol. Methods Nonlinear Anal, V4, P59, DOI [10.12775/TMNA.1994.023, DOI 10.12775/TMNA.1994.023]
[8]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[10]   Liouville theorems for elliptic inequalities and applications [J].
Birindelli, I ;
Mitidieri, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1217-1247