FOUR-MANIFOLDS OF PINCHED SECTIONAL CURVATURE

被引:2
作者
Cao, Xiaodong [1 ]
Tran, Hung [2 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
rigidity; Hopf conjecture; definite; Bochner technique; harmonic Weyl; Einstein; 4-DIMENSIONAL COMPACT MANIFOLDS; EINSTEIN MANIFOLDS; RIGIDITY; METRICS;
D O I
10.2140/pjm.2022.319.17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study closed four-dimensional manifolds. In particular, we show that under various pinching curvature conditions (for example, the sectional curvature is no more than 5/6 of the smallest Ricci eigenvalue), the manifold is definite. If restricting to a metric with harmonic Weyl tensor, then it must be self-dual or anti-self-dual under the same conditions. Similarly, if restricting to an Einstein metric, then it must be either the complex projective space with its Fubini-Study metric, the round sphere, or the quotient of one of these. Furthermore, we also classify Einstein manifolds with positive intersection form and an upper bound on the sectional curvature.
引用
收藏
页码:17 / 38
页数:22
相关论文
共 28 条
[1]  
[Anonymous], 1993, Proc. Symposia Pure Math.
[2]  
Berger Ber61 M., 1961, Ann. Mat. Pura Appl., V53, P89
[3]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, V10
[4]   POSITIVE BIORTHOGONAL CURVATURE ON S2 x S2 [J].
Bettiol, Renato G. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) :4341-4353
[5]  
Branson T, 2000, MATH RES LETT, V7, P245
[6]   EINSTEIN MANIFOLDS WITH NONNEGATIVE ISOTROPIC CURVATURE ARE LOCALLY SYMMETRIC [J].
Brendle, Simon .
DUKE MATHEMATICAL JOURNAL, 2010, 151 (01) :1-21
[7]   Refined Kato inequalities and conformal weights in Riemannian geometry [J].
Calderbank, DMJ ;
Gauduchon, P ;
Herzlich, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 173 (01) :214-255
[8]  
Cao X., 2014, PREPRINTS
[9]   Einstein four-manifolds of pinched sectional curvature [J].
Cao, Xiaodong ;
Tran, Hung .
ADVANCES IN MATHEMATICS, 2018, 335 :322-342
[10]   Four-Dimensional Compact Manifolds with Nonnegative Biorthogonal Curvature [J].
Costa, Ezio ;
Ribeiro, Ernani, Jr. .
MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (04) :747-761