On thermalization of magnetic nano-arrays at fabrication

被引:25
|
作者
Nisoli, Cristiano [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
关键词
SPIN ICE; MONOPOLES; ENTROPY;
D O I
10.1088/1367-2630/14/3/035017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a model to predict and control the statistical ensemble of magnetic degrees of freedom in artificial spin ice (ASI) during thermalized adiabatic growth (Wang et al 2006 Nature 439 303; Morgan et al Nature Phys. 7 75). We predict that as-grown arrays are controlled by the temperature at fabrication and by their lattice constant, and that they can be described by an effective temperature. If the geometry is conducive to a phase transition, then the lowest-temperature phase is accessed in arrays of lattice constant smaller than a critical value, which depends on the temperature at deposition. Alternatively, for arrays of equal lattice constant, there is a temperature threshold at deposition and the lowest-temperature phase is accessed for fabrication temperatures larger rather than smaller than this temperature threshold. Finally, we show how to define and control the effective temperature of the as-grown array and how to measure critical exponents directly. We discuss the role of kinetics at the critical point, and applications to experiments, in particular to as-grown thermalized square ASI and to magnetic monopole crystallization in as-grown honeycomb ASI.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fabrication of polypyrrole nano-arrays in lysozyme single crystals
    England, Matt W.
    Lambert, Elizabeth M.
    Li, Mei
    Turyanska, Lyudmila
    Patil, Avinash J.
    Mann, Stephen
    NANOSCALE, 2012, 4 (21) : 6710 - 6713
  • [2] Fabrication of Cu nano-arrays by template method and their characterizations
    Ren X.
    Huang X.
    Zhang H.
    He M.
    Frontiers of Materials Science in China, 2007, 1 (3): : 312 - 315
  • [3] Polypyrrole nano-networks and nano-arrays
    Acik, M
    Baristiran, C
    Sonmez, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U4034 - U4035
  • [4] Self-assembling in fabrication of ordered porphyrins and phthalocyanines hybrid nano-arrays on HOPG
    Shen, Yongtao
    Deng, Ke
    Li, Min
    Zhang, Xuemei
    Zhou, Gang
    Muellen, Klaus
    Zeng, Qingdao
    Wang, Chen
    CRYSTENGCOMM, 2013, 15 (27) : 5526 - 5531
  • [5] Fabrication of Transparent Superhydrophobic Nano-arrays and Self-ejecting Behavior of Dew Drops
    Zhang Youfa
    An Lijia
    Hao Jianxia
    Yu Xinquan
    Chen Feng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2016, 37 (10): : 1882 - 1890
  • [6] Coupled microstructural and magnetic transition in Co-doped Ni nano-arrays
    Yang, Chao-Yao
    Huang, Chun-Chao
    Tseng, Yuan-Chieh
    Liu, Chien-Min
    Chen, Chih
    Lin, Hong-Ji
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
  • [7] Growth of magnetic cobalt/chromium nano-arrays by atom-optical lithography
    Atoneche, F.
    Malik, D.
    Kirilyuk, A.
    Toonen, A. J.
    van Etteger, A. F.
    Rasing, Th
    JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS), 2011, 303
  • [8] Nano-arrays of DNA-binding cylinders
    White, Jenifer C.
    Hannon, Michael J.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2014, 19 : S831 - S832
  • [9] Preparation of nano-arrays by an atomic force microscope
    Breitenstein, Michael
    Christmann, Alexander
    Hoelzel, Ralph
    Bier, Frank R.
    DNA-BASED NANODEVICES, 2008, 1062 : 43 - 48
  • [10] Plasmonic nano-arrays for enhanced photoemission and photodetection
    Piltan, Shiva
    Sievenpiper, Dan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (02) : 208 - 213