The geometry of pure spinor space

被引:8
|
作者
Cederwall, Martin [1 ]
机构
[1] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
来源
关键词
Extended Supersymmetry; Differential and Algebraic Geometry; SUPERGRAVITY;
D O I
10.1007/JHEP01(2012)150
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the complex geometry of D = 10 pure spinor space. The Kahler structure and the corresponding metric giving rise to the desired Calabi-Yau property are determined, and an explicit covariant expression for the Laplacian is given. The metric is not that of a cone obtained by embedding pure spinor space in a flat space of unconstrained spinors. Some directions for future studies, concerning regularisation and generalisation to eleven dimensions, are briefly discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The geometry of pure spinor space
    Martin Cederwall
    Journal of High Energy Physics, 2012
  • [2] On projections to the pure spinor space
    Grassi, P. A.
    Guttenberg, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12):
  • [3] On projections to the pure spinor space
    P. A. Grassi
    S. Guttenberg
    Journal of High Energy Physics, 2011
  • [4] A projection to the pure spinor space
    Guttenberg, Sebastian
    STRINGS, GAUGE FIELDS, AND THE GEOMETRY BEHIND: THE LEGACY OF MAXIMILIAN KREUZER, 2013, : 305 - 314
  • [5] SPINOR SPACE AND LINE GEOMETRY
    HLAVATY, V
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (04): : 442 - 459
  • [6] Geometry of pure spinor formalism in superstring theory
    Movshev, Mikhail V.
    ADVANCES IN MATHEMATICS, 2015, 268 : 201 - 240
  • [7] From pure spinor geometry to quantum mechanics
    Budinich, P.
    Quantum Mechanics, 2006, 844 : 22 - 36
  • [8] Quantum entanglement as an aspect of pure spinor geometry
    Kiosses, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (40)
  • [9] SPINOR SPACE AND LINE GEOMETRY-II
    HLAVATY, V
    JOURNAL OF RATIONAL MECHANICS AND ANALYSIS, 1952, 1 (03): : 321 - 339
  • [10] SPACE-TIME STRUCTURE AND SPINOR GEOMETRY
    Szekeres, George
    Peters, Lindsay
    ANZIAM JOURNAL, 2008, 50 (02): : 143 - 176