Improved Hardy and Rellich inequalities on nonreversible Finsler manifolds

被引:5
作者
Yuan, Lixia [1 ]
Zhao, Wei [2 ]
Shen, Yibing [3 ]
机构
[1] Shanghai Normal Univ, Sch Math & Phys, Shanghai 200234, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Rellich inequality; Nonreversible Finsler manifold; Sharp constant;
D O I
10.1016/j.jmaa.2017.10.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the sharp constants of quantitative Hardy and Rellich inequalities on nonreversible Finsler manifolds equipped with arbitrary measures. In particular, these inequalities can be globally refined by adding remainder terms like the Brezis Vazquez improvement, if Finsler manifolds are of strictly negative flag curvature, vanishing S-curvature and finite uniformity constant. Furthermore, these results remain valid when Finsler metrics are reversible. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1512 / 1545
页数:34
相关论文
共 50 条
  • [11] Improved hardy inequalities on Riemannian manifolds
    Mohanta, Kaushik
    Tyagi, Jagmohan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (10) : 1770 - 1781
  • [12] HARDY AND RELLICH INEQUALITIES ON THE COMPLEMENT OF CONVEX SETS
    Robinson, Derek W.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (01) : 98 - 119
  • [13] Weighted Rellich and Hardy inequalities in Lp(•) spaces
    Edmunds, David
    Meskhi, Alexander
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [14] Finsler Hardy inequalities
    Mercaldo, Anna
    Sano, Megumi
    Takahashi, Futoshi
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (12) : 2370 - 2398
  • [15] Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations
    Nguyen Tuan Duy
    Nguyen Lam
    Nguyen Anh Triet
    JOURNAL OF SPECTRAL THEORY, 2020, 10 (04) : 1277 - 1302
  • [16] Hardy and Rellich Type Inequalities with Remainders
    Nasibullin, Ramil
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (01) : 87 - 110
  • [17] Hardy and Rellich type inequalities with remainders
    Ramil Nasibullin
    Czechoslovak Mathematical Journal, 2022, 72 : 87 - 110
  • [18] Bessel pairs and optimal Hardy and Hardy–Rellich inequalities
    Nassif Ghoussoub
    Amir Moradifam
    Mathematische Annalen, 2011, 349 : 1 - 57
  • [19] CHARACTERIZATIONS OF WEIGHTED HARDY-RELLICH INEQUALITIES AND THEIR APPLICATIONS
    Cao, Jun
    Jin, Yongyang
    Shen, Shoufeng
    Wu, Yurong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 873 - 893
  • [20] A GEOMETRICAL VERSION OF HARDY-RELLICH TYPE INEQUALITIES
    Nasibullin, Ramil
    MATHEMATICA SLOVACA, 2019, 69 (04) : 785 - 800