Improved Hardy and Rellich inequalities on nonreversible Finsler manifolds

被引:5
作者
Yuan, Lixia [1 ]
Zhao, Wei [2 ]
Shen, Yibing [3 ]
机构
[1] Shanghai Normal Univ, Sch Math & Phys, Shanghai 200234, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Rellich inequality; Nonreversible Finsler manifold; Sharp constant;
D O I
10.1016/j.jmaa.2017.10.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the sharp constants of quantitative Hardy and Rellich inequalities on nonreversible Finsler manifolds equipped with arbitrary measures. In particular, these inequalities can be globally refined by adding remainder terms like the Brezis Vazquez improvement, if Finsler manifolds are of strictly negative flag curvature, vanishing S-curvature and finite uniformity constant. Furthermore, these results remain valid when Finsler metrics are reversible. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1512 / 1545
页数:34
相关论文
共 25 条
[1]   Some improved Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Colorado, E ;
Peral, I .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (03) :327-345
[2]   On the best constant of Hardy-Sobolev inequalities [J].
Adimurthi ;
Filippas, Stathis ;
Tertikas, Achilles .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2826-2833
[3]  
ALVAREZ JC, 2004, SAMPLER RIEMANN FINS, P1
[4]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[5]  
Bao D., 2000, Graduate Texts in Mathematics, V200
[6]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[7]  
Burago D., 2001, GRAD STUD MATH, V33
[8]   Hardy inequalities on non-compact Riemannian manifolds [J].
Carron, G .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :883-891
[9]  
Chern S S., 2000, Lectures On Differential Geometry (Series on University Mathematics)
[10]  
Egloff D, 1997, ANN I H POINCARE-PHY, V66, P323