PdAg Alloy Nanowires: Facile One-Step Synthesis and High Electrocatalytic Activity for Formic Acid Oxidation

被引:167
作者
Lu, Yizhong [1 ,2 ]
Chen, Wei [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
PdAg nanowire; electrocatalysis; fuel cell; formic acid oxidation; electrochemical impedance spectroscopy; METHANOL ELECTROOXIDATION; ELECTROCHEMICAL SYNTHESIS; ULTRATHIN NANOWIRES; FUEL-CELLS; THIN-FILMS; NANOPARTICLES; PALLADIUM; OXYGEN; REDUCTION; CATALYSTS;
D O I
10.1021/cs200538g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bimetallic alloy PdAg nanowires were synthesized by a facile one-step wet chemical strategy. The unique nanostructure with large surface area and active surface (111) planes make them promising electrocatalysts for direct-liquid fuel cells. The electrochemical studies indicated that the PdAg alloy nanowires exhibit enhanced electrocatalytic activity toward formic acid oxidation with larger oxidation current density, higher tolerance to CO poisoning, and more negative onset potential in comparison with the commercial Pd/C catalysts. At the same potentials, the as-synthesized PdAg nanowires show higher long-term stability than Pd/C catalysts in the chronoamperometric analyses. The electron transfer kinetics of HCOOH oxidation on the PdAg nanowires was studied with electrochemical impedance spectroscopy (EIS). It was found that the charge transfer resistance (R-CT) of formic acid oxidation on PdAg nanowires is much smaller than that obtained from a Pd/C catalyst, which suggests that the electron-transfer kinetics for formic acid oxidation at the synthesized PdAg nanowires is highly facilitated. The present work highlights the facile synthesis of the homogeneous PdAg alloy nanowires and their potential application as anode electrocatalyst of fuel cells.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 47 条
[1]   Surface (electro-)chemistry on Pt(111) modified by a Pseudomorphic Pd monolayer [J].
Arenz, M ;
Stamenkovic, V ;
Ross, PN ;
Markovic, NM .
SURFACE SCIENCE, 2004, 573 (01) :57-66
[2]   Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes [J].
Baldauf, M ;
Kolb, DM .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (27) :11375-11381
[3]   Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells [J].
Bianchini, Claudio ;
Shen, Pei Kang .
CHEMICAL REVIEWS, 2009, 109 (09) :4183-4206
[4]   Ultrathin Nanowires - A Materials Chemistry Perspective [J].
Cademartiri, Ludovico ;
Ozin, Geoffrey A. .
ADVANCED MATERIALS, 2009, 21 (09) :1013-1020
[5]   Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles [J].
Chen, AC ;
La Russa, DJ ;
Miller, B .
LANGMUIR, 2004, 20 (22) :9695-9702
[6]   Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J].
Chen, Aicheng ;
Holt-Hindle, Peter .
CHEMICAL REVIEWS, 2010, 110 (06) :3767-3804
[7]   Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shonheng ;
Chen, Shaowei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3891-3898
[8]   Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shouheng ;
Chen, Shaowei .
LANGMUIR, 2007, 23 (22) :11303-11310
[9]   Langmuir-blodgett thin films of Fe20Pt80 nanoparticles for the electrocatalytic oxidation of formic acid [J].
Chen, Wei ;
Kim, Jaemin ;
Xu, Li-Ping ;
Sun, Shouheng ;
Chen, Shaowei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (36) :13452-13459
[10]   Electro-oxidation of formic acid catalyzed by FePt nanoparticles [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shouheng ;
Chen, Shaowei .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (23) :2779-2786