Improved prediction of protein-protein interactions using AlphaFold2

被引:588
作者
Bryant, P. [1 ,2 ]
Pozzati, G. [1 ,2 ]
Elofsson, A. [1 ,2 ]
机构
[1] Sci Life Lab, S-17221 Solna, Sweden
[2] Stockholm Univ, Dept Biochem & Biophys, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
DOCKING; PRINCIPLES; SEQUENCES; RESOURCE; RESIDUE;
D O I
10.1038/s41467-022-28865-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting the structure of interacting protein chains is a fundamental step towards understanding protein function. Unfortunately, no computational method can produce accurate structures of protein complexes. AlphaFold2, has shown unprecedented levels of accuracy in modelling single chain protein structures. Here, we apply AlphaFold2 for the prediction of heterodimeric protein complexes. We find that the AlphaFold2 protocol together with optimised multiple sequence alignments, generate models with acceptable quality (DockQ >= 0.23) for 63% of the dimers. From the predicted interfaces we create a simple function to predict the DockQ score which distinguishes acceptable from incorrect models as well as interacting from non-interacting proteins with state-of-art accuracy. We find that, using the predicted DockQ scores, we can identify 51% of all interacting pairs at 1% FPR. Predicting the structure of protein complexes is extremely difficult. Here, authors apply AlphaFold2 with optimized multiple sequence alignments to model complexes of interacting proteins, enabling prediction of both if and how proteins interact with state-of-art accuracy.
引用
收藏
页数:11
相关论文
共 57 条
[1]   Principles of flexible protein-protein docking [J].
Andrusier, Nelly ;
Mashiach, Efrat ;
Nussinov, Ruth ;
Wolfson, Haim J. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 73 (02) :271-289
[2]   Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model [J].
Anishchenko, Ivan ;
Kundrotas, Petras J. ;
Vakser, Ilya A. .
BIOPHYSICAL JOURNAL, 2018, 115 (05) :809-821
[3]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[4]   Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners [J].
Baldassi, Carlo ;
Zamparo, Marco ;
Feinauer, Christoph ;
Procaccini, Andrea ;
Zecchina, Riccardo ;
Weigt, Martin ;
Pagnani, Andrea .
PLOS ONE, 2014, 9 (03)
[5]   DockQ: A Quality Measure for Protein-Protein Docking Models [J].
Basu, Sankar ;
Wallner, Bjorn .
PLOS ONE, 2016, 11 (08)
[6]   UniProt: the universal protein knowledgebase in 2021 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Agivetova, Rahat ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Bursteinas, Borisas ;
Bye-A-Jee, Hema ;
Coetzee, Ray ;
Cukura, Austra ;
Da Silva, Alan ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lock, Antonia ;
Lopez, Rodrigo ;
Luciani, Aurelien ;
Luo, Jie ;
Lussi, Yvonne ;
Mac-Dougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Oliveira, Carla Susana ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Rice, Daniel ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sampson, Joseph .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D480-D489
[7]   Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis [J].
Blohm, Philipp ;
Frishman, Goar ;
Smialowski, Pawel ;
Goebels, Florian ;
Wachinger, Benedikt ;
Ruepp, Andreas ;
Frishman, Dmitrij .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D396-D400
[8]  
Burke DF., 2021, BIORXIV, DOI DOI 10.1101/2021.11.08.467664
[9]  
Chowdhury R., 2021, Single-sequence protein structure prediction using language models from deep learning, DOI DOI 10.1101/2021.08.02.454840
[10]   Protein interaction networks revealed by proteome coevolution [J].
Cong, Qian ;
Anishchenko, Ivan ;
Ovchinnikov, Sergey ;
Baker, David .
SCIENCE, 2019, 365 (6449) :185-+