Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling

被引:14
作者
Biler, P
Dolbeault, J
Markowich, PA
机构
[1] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[3] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 2001年 / 30卷 / 4-6期
关键词
nonlinear drift-diffusion systems; asymptotic behavior of solutions; logarithmic Sobolev inequalities; fast diffusion; porous media;
D O I
10.1081/TT-100105936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior as t --> +infinity of a system of densities of charged particles satisfying nonlinear drift-diffusion equations coupled by a damped Poisson equation for the drift-potential. In plasma physics applications the damping is caused by a spatio-temporal rescaling of an "unconfined" problem, which introduces a harmonic external potential of confinement. We present formal calculations (valid for smooth solutions) which extend the results known in the linear diffusion case to nonlinear diffusion of e.g. Fermi-Dirac or fast diffusion/porous media type.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 9 条
  • [1] ARNOLD A, 2000, IN PRESS COMM PDE
  • [2] ARNOLD A, 2000, IN PRESS TRANSPORT T
  • [3] Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems
    Biler, P
    Dolbeault, J
    [J]. ANNALES HENRI POINCARE, 2000, 1 (03): : 461 - 472
  • [4] CAFFARELLI L, 2000, IN PRESS INTERFACES
  • [5] CARRILLO JA, 2000, IN PRESS INDIANA U M
  • [6] DOLBEAULT J, 1991, MATH METH MODELS APP, V1, P188
  • [7] DOLBEAULT J, 1999, 9905 CERAMADE, P1
  • [8] MARKOWICH PA, 1993, ANN SCUOLA NORM SU 4, V20, P372
  • [9] OTTO F, 2000, IN PRESS COMM PDE