On Solvability of an Initial-Boundary Value Problem for a Viscoelasticity Model with Fractional Derivatives

被引:8
作者
Zvyagin, V. G. [1 ]
Orlov, V. P. [1 ]
机构
[1] Voronezh State Univ, Res Inst Math, Voronezh, Russia
关键词
viscoelastic medium; equation of motion; initial-boundary value problem; weak solution; anti-Zener model; fractional derivative; WEAK SOLVABILITY;
D O I
10.1134/S0037446618060101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence and uniqueness (the latter only in the plane case) of a weak solution to an initial-boundary value problem for the system of the equations of motion of a viscoelastic fluid, namely, for the anti-Zener model whose constitutive law contains fractional derivatives. We use the approximation of this problem by a sequence of regularized Navier-Stokes systems and passage to the limit.
引用
收藏
页码:1073 / 1089
页数:17
相关论文
共 15 条
[1]  
[Anonymous], 1966, Integral'nye operatory v prostranstvakh summiruemykh funktsii (Integral Operatorsin Spaces of Summable Functions)
[3]  
Gyarmati I., 1970, Non-Equilibrium Thermodynamics-Field Theory and Variational Principles
[4]   Creep, relaxation and viscosity properties for basic fractional models in rheology [J].
Mainardi, F. ;
Spada, G. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :133-160
[5]   RHEOLOGICAL MODEL OF VISCOELASTIC BODY WITH MEMORY AND DIFFERENTIAL EQUATIONS OF FRACTIONAL OSCILLATOR [J].
Ogorodnikov, E. N. ;
Radchenko, V. P. ;
Yashagin, N. S. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01) :255-268
[6]  
Orlov V. O., 1991, DIFFER INTEGRAL EQU, V4, P103
[7]   Weak solvability of the generalized Voigt viscoelasticity model [J].
Orlov, V. P. ;
Rode, D. A. ;
Pliev, M. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) :859-874
[8]  
Samko S. G., 1993, INTEGRALS FRACTIONAL
[9]  
Temam R, 2001, Navier-Stokes equations: theory and numerical analysis
[10]  
Yosida K., 1994, Functional Analysis