Quantum corrected polymer black hole thermodynamics: mass relations and logarithmic entropy correction

被引:11
作者
Mele, Fabio M. [1 ,3 ]
Muench, Johannes [2 ,3 ]
Pateloudis, Stratos [3 ]
机构
[1] Okinawa Inst Sci & Technol, 1919-1 Tancha, Okinawa 9040495, Japan
[2] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, F-13288 Marseille, France
[3] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
关键词
GR black holes; gravity; quantum black holes; quantum gravity phenomenology; GENERALIZED UNCERTAINTY PRINCIPLE; GEOMETRY; GRAVITY;
D O I
10.1088/1475-7516/2022/02/011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we continue the analysis of the effective model of quantum Schwarzschild black holes recently proposed by some of the authors in [1, 2]. In the resulting quantum-corrected spacetime the central singularity is resolved by a black-to-white hole bounce, quantum effects become relevant at a unique mass-independent curvature scale, while they become negligible in the low curvature region near the horizon and classical Schwarzschild geometry is approached asymptotically. This is the case independently of the relation between the black and white hole masses, which are thus freely specifiable independent observables. A natural question then arises about the phenomenological implications of the resulting non-singular effective spacetime and whether some specific relation between the masses can be singled out from a phenomenological perspective. Here we focus on the thermodynamic properties of the effective polymer black hole and analyze the corresponding quantum corrections as functions of black and white hole masses. The study of the relevant thermodynamic quantities such as temperature, specific heat, and horizon entropy reveals that the effective spacetime generically admits an extremal minimal-sized configuration of quantum-gravitational nature characterized by vanishing temperature and entropy. For large masses, the classically expected results are recovered at leading order and quantum corrections are negligible, thus providing us with a further consistency check of the model. The explicit form of the corrections depends on the specific relationship among the masses. In particular, a first-order logarithmic correction to the black hole entropy is obtained for a quadratic mass relation. The latter corresponds to the case of proper finite-length effects which turn out to be compatible with a minimal length generalized uncertainty principle associated with an extremal Planck-sized black hole.
引用
收藏
页数:33
相关论文
共 109 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   On gravity and the uncertainty principle [J].
Adler, RJ ;
Santiago, DI .
MODERN PHYSICS LETTERS A, 1999, 14 (20) :1371-1381
[3]   Combinatorics of the SU(2) black hole entropy in loop quantum gravity [J].
Agullo, Ivan ;
Fernando Barbero G, J. ;
Borja, Enrique F. ;
Diaz-Polo, Jacobo ;
Villasenor, Eduardo J. S. .
PHYSICAL REVIEW D, 2009, 80 (08)
[4]   First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole [J].
Akiyama, Kazunori ;
Alberdi, Antxon ;
Alef, Walter ;
Asada, Keiichi ;
Azulay, Rebecca ;
Baczko, Anne-Kathrin ;
Ball, David ;
Balokovic, Mislav ;
Barrett, John ;
Bintley, Dan ;
Blackburn, Lindy ;
Boland, Wilfred ;
Bouman, Katherine L. ;
Bower, Geoffrey C. ;
Bremer, Michael ;
Brinkerink, Christiaan D. ;
Brissenden, Roger ;
Britzen, Silke ;
Broderick, Avery E. ;
Broguiere, Dominique ;
Bronzwaer, Thomas ;
Byun, Do-Young ;
Carlstrom, John E. ;
Chael, Andrew ;
Chan, Chi-kwan ;
Chatterjee, Shami ;
Chatterjee, Koushik ;
Chen, Ming-Tang ;
Chen, Yongjun ;
Cho, Ilje ;
Christian, Pierre ;
Conway, John E. ;
Cordes, James M. ;
Crew, Geoffrey B. ;
Cui, Yuzhu ;
Davelaar, Jordy ;
De Laurentis, Mariafelicia ;
Deane, Roger ;
Dempsey, Jessica ;
Desvignes, Gregory ;
Dexter, Jason ;
Doeleman, Sheperd S. ;
Eatough, Ralph P. ;
Falcke, Heino ;
Fish, Vincent L. ;
Fomalont, Ed ;
Fraga-Encinas, Raquel ;
Freeman, William T. ;
Friberg, Per ;
Fromm, Christian M. .
ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (01)
[5]   Asymptotically de Sitter universe inside a Schwarzschild black hole [J].
Alesci, Emanuele ;
Bahrami, Sina ;
Pranzetti, Daniele .
PHYSICAL REVIEW D, 2020, 102 (06)
[6]   Quantum evolution of black hole initial data sets: Foundations [J].
Alesci, Emanuele ;
Bahrami, Sina ;
Pranzetti, Daniele .
PHYSICAL REVIEW D, 2018, 98 (04)
[7]  
Amadei L., ARXIV191100306
[8]   Unitarity and Information in Quantum Gravity: A Simple Example [J].
Amadei, Lautaro ;
Liu, Hongguang ;
Perez, Alejandro .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 8
[9]   Noncommutative correction to the entropy of Schwarzschild black hole with GUP [J].
Anacleto, M. A. ;
Brito, F. A. ;
Cruz, S. S. ;
Passos, E. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (03)
[10]   Quantum geometry and the Schwarzschild singularity [J].
Ashtekar, A ;
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) :391-411