Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution

被引:36
作者
Chen, YP [1 ]
机构
[1] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
singular perturbation; adaptive mesh; equidistribution principle; uniform convergence;
D O I
10.1016/S0377-0427(03)00563-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed two-point boundary value problem with an exponential boundary layer is solved numerically by using an adaptive grid method. The mesh is constructed adaptively by equidistributing a monitor function based on the arc-length of the exact solution. The error analysis for this approach was carried out by Qiu et al. (J. Comput. Appl. Math. 101 (1999) 1-25). In this work, their error bound will be improved to the optimal order which is independent of the perturbation parameter. The main ingredient used to obtain the improved result is the theory of the discrete Green's function. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 17 条
[1]  
ANDREYEV VB, 1995, COMP MATH MATH PHYS+, V35, P581
[2]   Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem [J].
Beckett, G ;
Mackenzie, JA .
APPLIED NUMERICAL MATHEMATICS, 2000, 35 (02) :87-109
[3]  
KELLOGG RB, 1978, MATH COMPUT, V32, P1025, DOI 10.1090/S0025-5718-1978-0483484-9
[4]   Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem [J].
Kopteva, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) :423-441
[5]   A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem [J].
Kopteva, N ;
Stynes, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) :1446-1467
[6]   Moving mesh methods in multiple dimensions based on harmonic maps [J].
Li, R ;
Tang, T ;
Zhang, PW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :562-588
[7]   Uniform pointwise convergence of finite difference schemes using grid equidistribution [J].
Linss, T .
COMPUTING, 2001, 66 (01) :27-39
[8]   Uniform pointwise convergence on Shishkin-type meshes for quasi-linear convection-diffusion problems [J].
Linss, T ;
Roos, HG ;
Vulanovic, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :897-912
[9]   Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems [J].
Liu, WB ;
Tang, T .
APPLIED NUMERICAL MATHEMATICS, 2001, 38 (03) :315-345
[10]   Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problem on an adaptive grid [J].
Mackenzie, J .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (02) :233-249