An unethical optimization principle

被引:4
作者
Beale, Nicholas [1 ]
Battey, Heather [2 ]
Davison, Anthony C. [3 ]
MacKay, Robert S. [4 ]
机构
[1] Sciteb Ltd, 23 Berkeley Sq, London W1J 6HE, England
[2] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[3] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
AI ethics; artificial intelligence; economics; extreme value theory; financial regulation;
D O I
10.1098/rsos.200462
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
If an artificial intelligence aims to maximize risk-adjusted return, then under mild conditions it is disproportionately likely to pick an unethical strategy unless the objective function allows sufficiently for this risk. Even if the proportion eta of available unethical strategies is small, the probability p(U) of picking an unethical strategy can become large; indeed, unless returns are fat-tailed p(U) tends to unity as the strategy space becomes large. We define an unethical odds ratio, Upsilon (capital upsilon), that allows us to calculate p(U) from eta, and we derive a simple formula for the limit of Upsilon as the strategy space becomes large. We discuss the estimation of Upsilon and p(U) in finite cases and how to deal with infinite strategy spaces. We show how the principle can be used to help detect unethical strategies and to estimate eta. Finally we sketch some policy implications of this work.
引用
收藏
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1999, Extremes, DOI [10.1023/A:1009963131610, DOI 10.1023/A:1009963131610]
[2]  
[Anonymous], 2001, An Introduction to Statistical Modelling of Extreme Values
[3]  
Bostrom N, 2014, CAMBRIDGE HANDBOOK OF ARTIFICIAL INTELLIGENCE, P316
[4]   The extremogram: A correlogram for extreme events [J].
Davis, Richard A. ;
Mikosch, Thomas .
BERNOULLI, 2009, 15 (04) :977-1009
[5]  
Davison A.C., 2003, STAT MODELS
[6]  
DAVISON AC, 1990, J ROY STAT SOC B MET, V52, P393
[7]   Ethics in artificial intelligence: introduction to the special issue [J].
Dignum, Virginia .
ETHICS AND INFORMATION TECHNOLOGY, 2018, 20 (01) :1-3
[8]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI [10.1007/978-3-642-33483-2, DOI 10.1007/978-3-642-33483-2]
[9]   Limiting forms of the frequency distribution of the largest or smallest member of a sample [J].
Fisher, RA ;
Tippett, LHC .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1928, 24 :180-190
[10]  
Leadbetter M.R., 1983, EXTREMES RELATED PRO, DOI 10.1007/978-1-4612-5449-2