Topological sequence entropy of interval maps

被引:13
作者
Cánovas, JS [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
关键词
D O I
10.1088/0951-7715/17/1/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a full classification of chaotic and non-chaotic interval maps from the point of view of topological sequence entropy. This completes the papers of Franzova and Smital (1991 Positive sequence topological entropy characterizes chaotic maps Proc. Am. Math. Soc. 112 1083-6) and Hric (1999 Topological sequence entropy for maps of the interval Proc. Am. Math. Soc. 127 2045-52). Moreover, with reference to interval maps, this paper establishes an analogous result to Pickel's result on metric sequence entropy (1969 Some properties of A-entropy Mat. Zametki 5 327-34 (in Russian)), and partially solves a question of Goodman (1974 Topological sequence entropy Proc. Lond. Math. Soc. 29 331-50).
引用
收藏
页码:49 / 56
页数:8
相关论文
共 13 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[3]   Commutativity and non-commutativity of topological sequence entropy [J].
Balibrea, F ;
Peña, JSC ;
López, VJ .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (05) :1693-+
[4]   On topological sequence entropy of piecewise monotonic mappings [J].
Cánovas, JS .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (01) :21-28
[5]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086
[6]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[7]   Topological sequence entropy for maps of the interval [J].
Hric, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) :2045-2052
[8]  
Kushnirenko A. G., 1967, Russian Math. Surveys, V22, P53, DOI 10.1070/RM1967v022n05ABEH001225
[9]  
KUTCHA M, 1989, EUR C IT THEOR CALD, P427
[10]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992