Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries

被引:69
作者
Angulakshmi, N. [2 ]
Thomas, Sabu [3 ]
Nahm, K. S. [4 ]
Stephan, A. Manuel [1 ]
Elizabeth, R. Nimma [2 ]
机构
[1] Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India
[2] Lady Doak Coll, Dept Phys, Madurai 652002, Tamil Nadu, India
[3] Mahatma Gandhi Univ, Sch Chem, Kottayam 686560, Kerala, India
[4] Chonbuk Natl Univ, Sch Chem Engn & Technol, Chonju 561756, Chonbuk, South Korea
关键词
Batteries; Electrochemical characterizations; Polymer electrolyte; Nanocomposite electrolytes; XRD; Mechanical properties; Thermal stability; Ionic conductivity; COMPOSITE POLYMER; POLY(ETHYLENE OXIDE); CONDUCTIVITY; NANOCOMPOSITE; CHITIN; ELECTRODES; STABILITY; SALT;
D O I
10.1007/s11581-010-0517-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocomposite polymer electrolytes (NCPE) composed of poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) and chitin for different concentrations of LiClO4 have been prepared by a hot-press technique. The prepared NCPE films were subjected to XRD, SEM, FTIR and tensile analyses. The thermal stability of NCPE membrane was investigated by TG-DTA. Ionic conductivity studies have also been made as a function of lithium salt concentration for different temperatures ranging from 0 to 80 A degrees C. The polymeric membrane comprising PVDF-HFP/chitin/LiClO4 of ratio 75:20:5 (wt.%) offered maximum ionic conductivity. Thermal study reveals that these membranes are stable up to 260 A degrees C.
引用
收藏
页码:407 / 414
页数:8
相关论文
共 42 条
[1]   Crystallinity and morphology of PVdF-HFP-based gel electrolytes [J].
Abbrent, S ;
Plestil, J ;
Hlavata, D ;
Lindgren, J ;
Tegenfeldt, J ;
Wendsjö, Å .
POLYMER, 2001, 42 (04) :1407-1416
[2]   Investigation on the stability of the lithium-polymer electrolyte interface [J].
Appetecchi, GB ;
Scaccia, S ;
Passerini, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4448-4452
[3]   Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes II.: All solid-state Li/LiFePO4 polymer batteries [J].
Appetecchi, GB ;
Hassoun, J ;
Scrosati, B ;
Croce, F ;
Cassel, F ;
Salomon, M .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :246-253
[4]  
Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
[5]   Design of organic-inorganic solid polymer electrolytes: synthesis, structure, and properties [J].
Bronstein, LM ;
Karlinsey, RL ;
Ritter, K ;
Joo, CG ;
Stein, B ;
Zwanziger, JW .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (12) :1812-1820
[6]   Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes [J].
Capiglia, C ;
Mustarelli, P ;
Quartarone, E ;
Tomasi, C ;
Magistris, A .
SOLID STATE IONICS, 1999, 118 (1-2) :73-79
[7]   COMPOSITE POLYMER ELECTROLYTES [J].
CAPUANO, F ;
CROCE, F ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) :1918-1922
[8]   Nano-tube TiO2 composite PVdF/LiPF6 solid membranes [J].
Chiang, CY ;
Reddy, MJ ;
Chu, PP .
SOLID STATE IONICS, 2004, 175 (1-4) :631-635
[9]   Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li [J].
Chu, PP ;
Reddy, MJ ;
Kao, HM .
SOLID STATE IONICS, 2003, 156 (1-2) :141-153
[10]   Studies of the interface between lithium electrodes and polymeric electrolyte systems using in situ FTIR spectroscopy [J].
Chusid, O ;
Gofer, Y ;
Aurbach, D ;
Watanabe, M ;
Momma, T ;
Osaka, T .
JOURNAL OF POWER SOURCES, 2001, 97-8 :632-636