Tailored CO2-Philic Anionic Poly(ionic liquid) Composite Membranes: Synthesis, Characterization, and Gas Transport Properties

被引:45
作者
Kammakakam, Irshad [1 ]
Bara, Jason E. [1 ]
Jackson, Enrique M. [2 ]
Lertxundi, Josu [3 ]
Mecerreyes, David [3 ]
Tome, Liliana C. [3 ]
机构
[1] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35487 USA
[2] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[3] Univ Basque Country, UPV EHU, POLYMAT, Joxe Mari Korta Ctr, Donostia San Sebastian 20018, Spain
基金
美国能源部;
关键词
Anionic poly(IL)s; Photopolymerization; Composite membranes; Gas separation; CO2; selectivity; HIGH-PERFORMANCE MEMBRANES; TEMPERATURE IONIC LIQUIDS; CO2; SEPARATION; CARBON CAPTURE; FLUE-GAS; PERMEABILITY; POLYMERS; SELECTIVITY; DESIGN; SYSTEM;
D O I
10.1021/acssuschemeng.0c00327
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymeric membranes either containing, or built from, ionic liquids (ILs) are of great interest for enhanced CO2/light gas separation due to the stronger affinity of ILs toward quadrupolar CO2 molecules and hence high CO2 solubility selectivity. Herein, we report the development of a series of four novel anionic poly(IL)-IL composite membranes via a photopolymerization method for effective CO2 separation. Interestingly, these are the first examples of anionic poly(IL)-IL composite systems in which the poly(IL) component has delocalized sulfonimide anions pendant from the polymer backbone with imidazolium cations as "free" counterions. Two types of photopolymerizable methacryloxy-based IL monomers (MILS) with highly delocalized anions (-SO2-N(-)-SO2-CF3 and -SO2-N(-)-SO2 C7H7) and mobile imidazolium ([C-2 mim](+)) countercations were successfully synthesized and photopolymerized with two distinct amounts of free IL containing the same structural cation ([C-2 miM][Tf2N]) and 20 wt % PEGDA cross-linker to serve as a composite matrix. The structure-property relationships of the four newly developed anionic poly(IL)-IL composite membranes were extensively characterized by thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction. All of the newly developed anionic poly(IL)-IL composite membranes exhibited superior CO2/CH4 and CO2/N-2 selectivities together with moderate CO2/H-2 selectivity and reasonable CO2 permeabilities. The membrane with an optimal composition and polymer architecture (MIL-C7H7/PEGDA((20%))/IL(1 equiv)) reaches the 2008 Robeson upper bound limit of CO2/CH4 due to the simultaneous improvement in permeability and selectivity (CO2 permeability similar to 20 barrer and alpha CO2/CH4 similar to 119). This study provides a promising strategy to explore the benefits of anionic poly(IL)-IL composites to separate CO2 from flue gas, natural gas, and syngas streams and open up new possibilities in polymer membrane design with strong candidate materials for practical applications.
引用
收藏
页码:5954 / 5965
页数:12
相关论文
共 57 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]   Polymeric Gas-Separation Membranes for Petroleum Refining [J].
Alqaheem, Yousef ;
Alomair, Abdulaziz ;
Vinoba, Mari ;
Perez, Andres .
INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2017, 2017
[3]   CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models [J].
Anderson, Thomas R. ;
Hawkins, Ed ;
Jones, Philip D. .
ENDEAVOUR, 2016, 40 (03) :178-187
[4]   Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate [J].
Anthony, JL ;
Maginn, EJ ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7315-7320
[5]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/nmat2448, 10.1038/NMAT2448]
[6]   Natural gas processing with membranes: An overview [J].
Baker, Richard W. ;
Lokhandwala, Kaaeid .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (07) :2109-2121
[7]   Future directions of membrane gas separation technology [J].
Baker, RW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1393-1411
[8]   Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid [J].
Bara, Jason E. ;
Hatakeyama, Evan S. ;
Gin, Douglas L. ;
Noble, Richard D. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2008, 19 (10) :1415-1420
[9]   Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents [J].
Bara, Jason E. ;
Gabriel, Christopher J. ;
Hatakeyama, Evan S. ;
Carlisle, Trevor K. ;
Lessmann, Sonja ;
Noble, Richard D. ;
Gin, Douglas L. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 321 (01) :3-7
[10]   Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes [J].
Bara, Jason E. ;
Hatakeyama, Evan S. ;
Gabriel, Christopher J. ;
Zeng, Xiaohui ;
Lessmann, Sonja ;
Gin, Douglas L. ;
Noble, Richard D. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 316 (1-2) :186-191