Side Conditions for Ordinary Differential Equations

被引:0
作者
Cicogna, Giampaolo [1 ,2 ]
Gaeta, Giuseppe [3 ]
Walcher, Sebastian [4 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
[3] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[4] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
关键词
Invariant set; Lie series; infinitesimal symmetry; quasi-steady state (QSS); QUASI-STEADY-STATE; SYMMETRIES; REDUCTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We specialize Olver's and Rosenau's side condition heuristics for the determination of particular invariant sets of ordinary differential equations. It turns out that side conditions of so-called LaSalle type are of special interest. Moreover we put side condition properties of symmetric and partially symmetric equations in a wider context. In the final section we present an application to parameter-dependent systems, in particular to quasi-steady state for chemical reactions.
引用
收藏
页码:125 / 146
页数:22
相关论文
共 31 条
  • [1] [Anonymous], 1952, Mathematical Sbornik
  • [2] Atkins P. W., 2006, Atkins' Physical Chemistry
  • [3] Bluman G. W., 1974, SIMILARITY METHODS D, DOI [10.1007/978-1-4612-6394-4, DOI 10.1007/978-1-4612-6394-4]
  • [4] Borghans JAM, 1996, B MATH BIOL, V58, P43, DOI 10.1016/0092-8240(95)00306-1
  • [5] Calder MS, 2011, ELECTRON J QUAL THEO, P1
  • [6] A generalization of λ-symmetry reduction for systems of ODEs: σ-symmetries
    Cicogna, G.
    Gaeta, G.
    Walcher, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (35)
  • [7] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [8] Cicogna G, 2013, J LIE THEORY, V23, P357
  • [9] Cox D.A., 2015, Undergraduate texts in mathematics, DOI [10.1007/978-3-319-16721-3, DOI 10.1007/978-0-387-35651-8]