Faraday waves in binary nonmiscible Bose-Einstein condensates

被引:74
作者
Balaz, Antun [1 ]
Nicolin, Alexandru I. [2 ]
机构
[1] Univ Belgrade, Inst Phys Belgrade, Comp Sci Lab, Belgrade 11080, Serbia
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele 077125, Romania
关键词
BRIGHT; DARK; SEPARATION; DYNAMICS; SOLITONS;
D O I
10.1103/PhysRevA.85.023613
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show by extensive numerical simulations and analytical variational calculations that elongated binary nonmiscible Bose-Einstein condensates subject to periodic modulations of the radial confinement exhibit a Faraday instability similar to that seen in one-component condensates. Considering the hyperfine states of Rb-87 condensates, we show that there are two experimentally relevant stationary-state configurations: one in which the components form a dark-bright symbiotic pair (the ground state of the system) and one in which the components are segregated (first excited state). For each of these two configurations, we show numerically that far from resonances the Faraday waves excited in the two components are of similar periods, emerge simultaneously, and do not impact the dynamics of the bulk of the condensate. We derive analytically the period of the Faraday waves using a variational treatment of the coupled Gross-Pitaevskii equations combined with a Mathieu-type analysis for the selection mechanism of the excited waves. Finally, we show that for a modulation frequency close to twice that of the radial trapping, the emergent surface waves fade out in favor of a forceful collective mode that turns the two condensate components miscible.
引用
收藏
页数:12
相关论文
共 72 条
[51]   Confinement-induced resonance in quasi-one-dimensional systems under transversely anisotropic confinement [J].
Peng, Shi-Guo ;
Bohloul, Seyyed S. ;
Liu, Xia-Ji ;
Hu, Hui ;
Drummond, Peter D. .
PHYSICAL REVIEW A, 2010, 82 (06)
[52]   Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations [J].
PerezGarcia, VM ;
Michinel, H ;
Cirac, JI ;
Lewenstein, M ;
Zoller, P .
PHYSICAL REVIEW A, 1997, 56 (02) :1424-1432
[53]  
Pethick CJ, 2008, BOSE-EINSTEIN CONDENSATION IN DILUTE GASES, P1
[54]   Interface solitons in locally linked two-dimensional lattices [J].
Petrovic, M. D. ;
Gligoric, G. ;
Maluckov, A. ;
Hadzievski, Lj. ;
Malomed, B. A. .
PHYSICAL REVIEW E, 2011, 84 (02)
[55]   Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length [J].
Pollack, S. E. ;
Dries, D. ;
Hulet, R. G. ;
Magalhaes, K. M. F. ;
Henn, E. A. L. ;
Ramos, E. R. F. ;
Caracanhas, M. A. ;
Bagnato, V. S. .
PHYSICAL REVIEW A, 2010, 81 (05)
[56]   Vector solitons in nearly one-dimensional Bose-Einstein condensates [J].
Salasnich, Luca ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2006, 74 (05)
[57]   Self-induced density modulations in the free expansion of Bose-Einstein condensates [J].
Salasnich, Luca ;
Manini, Nicola ;
Bonelli, Federico ;
Korbman, Michael ;
Parola, Alberto .
PHYSICAL REVIEW A, 2007, 75 (04)
[58]   Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates [J].
Schweikhard, V ;
Coddington, I ;
Engels, P ;
Tung, S ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[59]   Faraday patterns in Bose-Einstein condensates -: art. no. 210406 [J].
Staliunas, K ;
Longhi, S ;
de Valcárcel, GJ .
PHYSICAL REVIEW LETTERS, 2002, 89 (21) :210406-210406
[60]   Faraday patterns in low-dimensional Bose-Einstein condensates -: art. no. 011601 [J].
Staliunas, K ;
Longhi, S ;
de Valcárcel, GJ .
PHYSICAL REVIEW A, 2004, 70 (01) :011601-1