Monochromatic Cycles in 2-Coloured Graphs

被引:23
作者
Benevides, F. S. [2 ]
Luczak, T. [3 ]
Scott, A. [1 ]
Skokan, J. [4 ]
White, M. [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[3] Adam Mickiewicz Univ, Dept Discrete Math, PL-61614 Poznan, Poland
[4] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
关键词
D O I
10.1017/S0963548312000090
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Li, Nikiforov and Schelp [13] conjectured that any 2-edge coloured graph G with order n and minimum degree delta(G) > 3n/4 contains a monochromatic cycle of length l, for all l is an element of [4, [n/2]]. We prove this conjecture for sufficiently large n and also find all 2-edge coloured graphs with delta(G) = 3n/4 that do not contain all such cycles. Finally, we show that, for all delta > 0 and n > n(0)(delta), if G is a 2-edge coloured graph of order n with delta(G) >= 3n/4, then one colour class either contains a monochromatic cycle of length at least (2/3 + delta/2)n, or contains monochromatic cycles of all lengths l is an element of [3, (2/3 - delta)n].
引用
收藏
页码:57 / 87
页数:31
相关论文
共 15 条
  • [1] [Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [2] [Anonymous], 1972, Journal of combinatorial theory, DOI DOI 10.1016/0095-8956(72)90020-2
  • [3] [Anonymous], 1993, Com binatorics: Paul Erdos is eighty
  • [4] The 3-colored Ramsey number of even cycles
    Benevides, Fabricio Siqueira
    Skokan, Jozef
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) : 690 - 708
  • [5] BERGE C, 1958, CR HEBD ACAD SCI, V247, P258
  • [6] Bollobas B., 2004, Extremal Graph Theory
  • [7] Bollobas B., 2011, GRAPHS LARGE M UNPUB
  • [8] Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
  • [9] Bondy J.A., 1971, Journal of Combinatorial Theory, Series B, V11, P80
  • [10] Erdos Paul, 1959, Acta Math. Acad. Sci. Hungar, V10, P337, DOI [10.1007/bf02024498, DOI 10.1007/BF02024498]