Transparent sculptured titania films for enhanced light absorption in thin-film Si solar cells

被引:5
作者
Hung, Kai-Hsiang [1 ,2 ]
Chiou, Guan-Di [3 ]
Wong, Ming-Show [3 ]
Wang, Yu-Chih [1 ,2 ]
Chung, I-Shan [4 ,5 ]
机构
[1] Ind Technol Res Inst, Green Energy Lab, Hsinchu 31040, Taiwan
[2] Ind Technol Res Inst, Environm Res Lab, Hsinchu 31040, Taiwan
[3] Natl Dong Hwa Univ, Dept Mat Sci & Engn, Hualien, Taiwan
[4] Ind Technol Res Inst, Elect Lab, Hsinchu 31040, Taiwan
[5] Ind Technol Res Inst, Optoelect Res Lab, Hsinchu 31040, Taiwan
关键词
Titania (TiO(2)); Nanostructure; Light scattering; Glancing angle deposition (GLAD); Solar cells; GLANCING ANGLE DEPOSITION; CHEMICAL-VAPOR-DEPOSITION; OPTICAL-PROPERTIES; TIO2; EFFICIENCY;
D O I
10.1016/j.tsf.2011.10.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a description of the enhancement of light absorption in thin-film silicon (Si) solar cells by using sculptured titania (TiO(2)) films. We used an electron-beam evaporation system with a glancing angle deposition (GLAD) method to deposit porous TiO(2) films on fluorine-doped SnO(2) (FTO) substrates. The GLAD TiO(2)/FTO films were used as conductive electrodes in hydrogenated microcrystalline silicon (mu c-Si:H) solar cells. Transmission electron microscopy revealed that the GLAD TiO(2) films are composed of sculptured nano-pillars on an FTO surface, and this nanostructure provides a synergistic route for light scattering enhancement. The GLAD TiO(2)/FTO exhibited a 68% improvement of optical haze (at lambda=600 nm). The mu c-Si:H solar cells consisting of the GLAD-nanostructured TiO(2) resulted in a 5% improvement of short-circuit current (J(sc)) and yielded a cell efficiency of 6.6%. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1385 / 1389
页数:5
相关论文
共 29 条
  • [1] Bailat J., 2010, 25 EUR PHOT SOL EN C, P2720
  • [2] Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting
    Battaglia, Corsin
    Soederstroem, Karin
    Escarre, Jordi
    Haug, Franz-Josef
    Domine, Didier
    Cuony, Peter
    Boccard, Mathieu
    Bugnon, Gregory
    Denizot, Celine
    Despeisse, Matthieu
    Feltrin, Andrea
    Ballif, Christophe
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (21)
  • [3] Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics
    Chhajed, Sameer
    Schubert, Martin F.
    Kim, Jong Kyu
    Schubert, E. Fred
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (25)
  • [4] Das C., 2007, 22 EUR PHOT SOL EN C, P2112
  • [5] A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells
    Das, Chandan
    Lambertz, Andreas
    Huepkes, Juergen
    Reetz, Wilfried
    Finger, Friedhelm
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (05)
  • [6] Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes
    Fay, S
    Kroll, U
    Bucher, C
    Vallat-Sauvain, E
    Shah, A
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 86 (03) : 385 - 397
  • [7] Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating
    Fujibayashi, T
    Matsui, T
    Kondo, M
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (18)
  • [8] Effect of plasma and thermal annealing on optical and electronic properties of SnO2 substrates used for a-Si solar cells
    Hegedus, SS
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (01) : 620 - 626
  • [9] ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells
    Hongsingthong, Aswin
    Krajangsang, Taweewat
    Yunaz, Ihsanul Afdi
    Miyajima, Shinsuke
    Konagai, Makoto
    [J]. APPLIED PHYSICS EXPRESS, 2010, 3 (05)
  • [10] Modulated surface textures for enhanced light trapping in thin-film silicon solar cells
    Isabella, Olindo
    Krc, Janez
    Zeman, Miro
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (10)