Turing instability of anomalous reaction-anomalous diffusion systems

被引:8
作者
Nec, Y. [1 ]
Nepomnyashchy, A. A. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
D O I
10.1017/S0956792508007389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear stability theory is developed for an activator-inhibitor model where fractional derivative operators of generally different exponents act both on diffusion and reaction terms. It is shown that in the short wave limit the growth rate is a power law of the wave number with decoupled time scales for distinct anomaly exponents of the different species. With equal anomaly exponents an exact formula for the anomalous critical value of reactants diffusion coefficients' ratio is obtained.
引用
收藏
页码:329 / 349
页数:21
相关论文
共 25 条
  • [1] Subdiffusion and anomalous local viscoelasticity in actin networks
    Amblard, F
    Maggs, AC
    Yurke, B
    Pargellis, AN
    Leibler, S
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (21) : 4470 - 4473
  • [2] [Anonymous], 1994, LAPLACE TRANSFORM ME
  • [3] Ben-Avraham D, 2000, Diffusion and reactions in fractals and disordered systems
  • [4] Experimental evidence of power-law trapping-time distributions in porous media
    Drazer, G
    Zanette, DH
    [J]. PHYSICAL REVIEW E, 1999, 60 (05) : 5858 - 5864
  • [5] Migration and proliferation dichotomy in tumor-cell invasion
    Fedotov, Sergei
    Iomin, Alexander
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (11)
  • [6] Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe
    Georgiou, G
    Bahra, SS
    Mackie, AR
    Wolfe, CA
    O'Shea, P
    Ladha, S
    Fernandez, N
    Cherry, RJ
    [J]. BIOPHYSICAL JOURNAL, 2002, 82 (04) : 1828 - 1834
  • [7] Turing pattern formation in fractional activator-inhibitor systems
    Henry, BI
    Langlands, TAM
    Wearne, SL
    [J]. PHYSICAL REVIEW E, 2005, 72 (02):
  • [8] Existence of Turing instabilities in a two-species fractional reaction-diffusion system
    Henry, BI
    Wearne, SL
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) : 870 - 887
  • [9] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [10] How to measure subdiffusion parameters -: art. no. 170602
    Kosztolowicz, T
    Dworecki, K
    Mrówczynski, S
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (17)