A NON-LOCAL RANDOM WALK ON THE HYPERCUBE

被引:2
作者
Nestoridi, Evita [1 ,2 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
关键词
Hypercube; coupling; random walk; Ehrenfest urn model; MARKOV-CHAINS; FINITE-GROUPS;
D O I
10.1017/apr.2017.42
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the random walk on the hypercube (Z/2Z)(n) which at each step flips k randomly chosen coordinates. We prove that the mixing time for this walk is of the order (n/k) log n. We also prove that if k = o(n) then the walk exhibits cutoff at (n/2k) log n with window n/2k.
引用
收藏
页码:1288 / 1299
页数:12
相关论文
共 16 条
[1]   SHUFFLING CARDS AND STOPPING-TIMES [J].
ALDOUS, D ;
DIACONIS, P .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (05) :333-348
[2]   MINIMIZATION ALGORITHMS AND RANDOM-WALK ON THE D-CUBE [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1983, 11 (02) :403-413
[3]  
ALDOUS D, 1983, LECT NOTES MATH, V986, P243
[4]  
Andersen HC, 2007, Journal de la Societe francaise de statistique Revue de statistique appliquee, V148, P5
[5]  
[Anonymous], 1947, AM MATH MON, DOI DOI 10.2307/2304386
[6]   Path coupling: A technique for proving rapid mixing in Markov chains [J].
Bubley, R ;
Dyer, M .
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, :223-231
[7]   TIME TO REACH STATIONARITY IN THE BERNOULLI LAPLACE DIFFUSION-MODEL [J].
DIACONIS, P ;
SHAHSHAHANI, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :208-218
[8]   COMPARISON TECHNIQUES FOR RANDOM-WALK ON FINITE-GROUPS [J].
DIACONIS, P ;
SALOFFCOSTE, L .
ANNALS OF PROBABILITY, 1993, 21 (04) :2131-2156
[9]  
Diaconis P., 1990, Random Structures & Algorithms, V1, P51, DOI [10.1002/rsa.3240010105, DOI 10.1002/RSA.3240010105]
[10]  
DIACONIS P., 1988, Lect. Notes-Monogr. Ser., V11