Intensity-Dependent Exciton Dynamics of (6,5) Single-Walled Carbon Nanotubes: Momentum Selection Rules, Diffusion, and Nonlinear Interactions

被引:28
作者
Harrah, D. Mark [1 ,2 ]
Schneck, Jude R. [2 ,3 ]
Green, Alexander A. [5 ]
Hersam, Mark C. [6 ,7 ]
Ziegler, Lawrence D. [2 ,3 ]
Swan, Anna K. [1 ,2 ,4 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Dept Chem, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
[5] Harvard Univ, Wyss Inst, Cambridge, MA 02138 USA
[6] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
single-walled carbon nanotubes; pump-probe; diffusion; ENERGY-TRANSFER; FLUORESCENCE;
D O I
10.1021/nn203604v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exciton dynamics for an ensemble of individual, suspended (6,5), single-walled carbon nanotubes revealed by single color E(22) resonant pump-probe spectroscopy for a wide range of pump fluences are reported. The optically excited initial exciton population ranges from approximately 5 to 120 excitons per similar to 725 nm nanotube. At the higher fluences of this range, the pump probe signals are no longer linearly dependent on the pump Intensity. A single, predictive model is described that fits all data for two decades of pump fluences and three decades of delay times. The model introduces population loss from the optically active zero momentum E(22) state to the rest of the E(22) subband, which Is dark due to momentum selection rules. In the single exciton limit, the E(11) dynamics are well described by a stretched exponential, which is a direct consequence of diffusion quenching from an ensemble of nanotubes of different lengths. The observed change in population relaxation dynamics as a function of increasing pump intensity is attributed to exciton exciton Auger de-excitation in the E(11) subband and, to a lesser extent, in the E(22) subband. From the fit to the model, an average defect density 1/rho = 150 nm and diffusion constants D(11) = 4 cm(2)/s and D(22) = 0.2 cm(2)/s are determined.
引用
收藏
页码:9898 / 9906
页数:9
相关论文
共 53 条
[21]   Ultrafast Exciton Energy Transfer between Nanoscale Coaxial Cylinders: Intertube Transfer and Luminescence Quenching in Double-Walled Carbon Nanotubes [J].
Koyama, Takeshi ;
Asada, Yuki ;
Hikosaka, Naoki ;
Miyata, Yasumitsu ;
Shinohara, Hisanori ;
Nakamura, Arao .
ACS NANO, 2011, 5 (07) :5881-5887
[22]   Femtosecond luminescence decay due to exciton energy transfer in single-walled carbon nanotube bundles [J].
Koyama, Takeshi ;
Asaka, Koji ;
Hikosaka, Naoki ;
Kishida, Hideo ;
Saito, Yahachi ;
Nakamura, Arao .
JOURNAL OF LUMINESCENCE, 2011, 131 (03) :494-497
[23]   Ultrafast Excitation Energy Transfer in Small Semiconducting Carbon Nanotube Aggregates [J].
Lueer, Larry ;
Crochet, Jared ;
Hertel, Tobias ;
Cerullo, Giulio ;
Lanzani, Guglielmo .
ACS NANO, 2010, 4 (07) :4265-4273
[24]  
Lüer L, 2009, NAT PHYS, V5, P54, DOI [10.1038/nphys1149, 10.1038/NPHYS1149]
[25]   Ultrafast Exciton Dephasing in Semiconducting Single-Walled Carbon Nanotubes [J].
Ma, Ying-Zhong ;
Graham, Matthew W. ;
Fleming, Graham R. ;
Green, Alexander A. ;
Hersam, Mark C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (21)
[26]   Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation [J].
Ma, YZ ;
Valkunas, L ;
Dexheimer, SL ;
Bachilo, SM ;
Fleming, GR .
PHYSICAL REVIEW LETTERS, 2005, 94 (15)
[27]   Intersubband exciton relaxation dynamics in single-walled carbon nanotubes [J].
Manzoni, C ;
Gambetta, A ;
Menna, E ;
Meneghetti, M ;
Lanzani, G ;
Cerullo, G .
PHYSICAL REVIEW LETTERS, 2005, 94 (20)
[28]   Exciton binding energies in carbon nanotubes from two-photon photoluminescence [J].
Maultzsch, J ;
Pomraenke, R ;
Reich, S ;
Chang, E ;
Prezzi, D ;
Ruini, A ;
Molinari, E ;
Strano, MS ;
Thomsen, C ;
Lienau, C .
PHYSICAL REVIEW B, 2005, 72 (24)
[29]   Length-Dependent Photoluminescence Lifetimes in Single-Walled Carbon Nanotubes [J].
Miyauchi, Yuhei ;
Matsuda, Kazunari ;
Yamamoto, Yuki ;
Nakashima, Naotoshi ;
Kanemitsu, Yoshihiko .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12905-12908
[30]   Exciton Diffusion in Air-Suspended Single-Walled Carbon Nanotubes [J].
Moritsubo, S. ;
Murai, T. ;
Shimada, T. ;
Murakami, Y. ;
Chiashi, S. ;
Maruyama, S. ;
Kato, Y. K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (24)