The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants

被引:103
作者
Li, Ying [1 ]
Mukherjee, Indrani [1 ]
Thum, Karen E. [1 ]
Tanurdzic, Milos [2 ,3 ]
Katari, Manpreet S. [1 ]
Obertello, Mariana [1 ,4 ]
Edwards, Molly B. [1 ]
McCombie, W. Richard [2 ]
Martienssen, Robert A. [2 ]
Coruzzi, Gloria M. [1 ]
机构
[1] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA
[2] Cold Spring Harbor Lab, New York, NY 11724 USA
[3] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia
[4] Consejo Nacl Invest Cient & Tecn, Inst Ingn Genet & Biol Mol INGEBI, RA-1033 Buenos Aires, DF, Argentina
关键词
GENOME-WIDE; TRANSCRIPTION FACTOR; FUNCTIONAL GENOMICS; DOMAIN PROTEINS; ARABIDOPSIS; EXPRESSION; H3; DEFENSE; STRESS; BZIP1;
D O I
10.1186/s13059-015-0640-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. Results: To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3' end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. Conclusions: The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production.
引用
收藏
页数:15
相关论文
共 75 条
[1]   A central integrator of transcription networks in plant stress and energy signalling [J].
Baena-Gonzalez, Elena ;
Rolland, Filip ;
Thevelein, Johan M. ;
Sheen, Jen .
NATURE, 2007, 448 (7156) :938-U10
[2]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[3]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Functional annotation of the Arabidopsis genome using controlled vocabularies [J].
Berardini, TZ ;
Mundodi, S ;
Reiser, L ;
Huala, E ;
Garcia-Hernandez, M ;
Zhang, PF ;
Mueller, LA ;
Yoon, J ;
Doyle, A ;
Lander, G ;
Moseyko, N ;
Yoo, D ;
Xu, I ;
Zoeckler, B ;
Montoya, M ;
Miller, N ;
Weems, D ;
Rhee, SY .
PLANT PHYSIOLOGY, 2004, 135 (02) :745-755
[6]   Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack [J].
Berr, Alexandre ;
Menard, Rozenn ;
Heitz, Thierry ;
Shen, Wen-Hui .
CELLULAR MICROBIOLOGY, 2012, 14 (06) :829-839
[7]   Arabidopsis Histone Methyltransferase SET DOMAIN GROUP8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi [J].
Berr, Alexandre ;
McCallum, Emily J. ;
Alioua, Abdelmalek ;
Heintz, Dimitri ;
Heitz, Thierry ;
Shen, Wen-Hui .
PLANT PHYSIOLOGY, 2010, 154 (03) :1403-1414
[8]   Animal Transcription Networks as Highly Connected, Quantitative Continua [J].
Biggin, Mark D. .
DEVELOPMENTAL CELL, 2011, 21 (04) :611-626
[9]  
Bloom AJ, 2011, ANNU PLANT REV, V42, P63, DOI 10.1002/9781444328608.ch3
[10]   Primary Metabolism and Plant Defense-Fuel for the Fire [J].
Bolton, Melvin D. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (05) :487-497