High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model

被引:9
作者
Graham, J. Pietarila [1 ,2 ]
Mininni, P. D. [3 ,4 ,5 ]
Pouquet, A. [3 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[2] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[3] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[5] Consejo Nacl Invest Cient & Tecn, IFIBA, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 01期
基金
美国国家科学基金会;
关键词
SCALE INTERACTIONS; MAGNETIC-FIELDS; MHD TURBULENCE; ENERGY-SPECTRA; SIMULATIONS; FLUCTUATIONS; CASCADES;
D O I
10.1103/PhysRevE.84.016314
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfven time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Two-dimensional magnetohydrodynamic turbulence in the small magnetic Prandtl number limit
    Dritschel, David G.
    Tobias, Steven M.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 703 : 85 - 98
  • [32] Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers
    Krasnov, Dmitry
    Zikanov, Oleg
    Boeck, Thomas
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 704 : 421 - 446
  • [33] Kinetic energy spectrum of low-Reynolds-number turbulence with polymer additives
    Watanabe, Takeshi
    Gotoh, Toshiyuki
    [J]. 24TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (IUPAP-CCP 2012), 2013, 454
  • [34] Evaluation of Reynolds stress MHD turbulence models using decaying homogeneous turbulence
    Marzougui, Hamed
    Lili, Taieb
    [J]. COMPTES RENDUS PHYSIQUE, 2014, 15 (06) : 509 - 516
  • [35] Formulation of subgrid stochastic acceleration model (SSAM) for LES of a high Reynolds number flow
    Sabel'nikov, V.
    Chtab, A.
    Gorokhovski, M.
    [J]. ADVANCES IN HYBRID RANS-LES MODELLING, 2008, : 299 - +
  • [36] Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: Two-loop approximation
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. PHYSICAL REVIEW E, 2011, 84 (04):
  • [37] Two-dimensional magnetohydrodynamic turbulence in the limits of infinite and vanishing magnetic Prandtl number
    Tran, Chuong V.
    Yu, Xinwei
    Blackbourn, Luke A. K.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 725 : 195 - 215
  • [38] FLOW-GEOMETRY AND REYNOLDS-NUMBER EFFECTS ON FLAME-TURBULENCE INTERACTIONS
    Minamoto, Yuki
    Nada, Yuzuru
    Shimura, Masayasu
    Fukushima, Naoya
    Shim, Youngsam
    Tanahashi, Mamoru
    Miyauchi, Toshio
    [J]. PROCEEDINGS OF THE ASME/JSME 8TH THERMAL ENGINEERING JOINT CONFERENCE 2011, VOL 2, 2011, : 741 - 747
  • [39] Bounds on the attractor dimension for magnetohydrodynamic channel flow with parallel magnetic field at low magnetic Reynolds number
    Low, R.
    Potherat, A.
    [J]. PHYSICAL REVIEW E, 2015, 91 (05):
  • [40] Anisotropic diffusion of high-energy cosmic rays in magnetohydrodynamic turbulence
    Gao, Na-Na
    Zhang, Jian-Fu
    [J]. ASTRONOMY & ASTROPHYSICS, 2025, 694