High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model

被引:9
作者
Graham, J. Pietarila [1 ,2 ]
Mininni, P. D. [3 ,4 ,5 ]
Pouquet, A. [3 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[2] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[3] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[5] Consejo Nacl Invest Cient & Tecn, IFIBA, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 01期
基金
美国国家科学基金会;
关键词
SCALE INTERACTIONS; MAGNETIC-FIELDS; MHD TURBULENCE; ENERGY-SPECTRA; SIMULATIONS; FLUCTUATIONS; CASCADES;
D O I
10.1103/PhysRevE.84.016314
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfven time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Three-dimensional Model for the Evolution of Magnetohydrodynamic Turbulence in the Outer Heliosphere
    Kleimann, Jens
    Oughton, Sean
    Fichtner, Horst
    Scherer, Klaus
    ASTROPHYSICAL JOURNAL, 2023, 953 (02)
  • [22] Hall magnetohydrodynamic turbulence with a magnetic Prandtl number larger than unity
    Miura, Hideaki
    Yang, Jiguan
    Gotoh, Toshiyuki
    PHYSICAL REVIEW E, 2019, 100 (06):
  • [23] Wall turbulence at high friction Reynolds numbers
    Hoyas, Sergio
    Oberlack, Martin
    Alcantara-Avila, Francisco
    V. Kraheberger, Stefanie
    Laux, Jonathan
    PHYSICAL REVIEW FLUIDS, 2022, 7 (01)
  • [24] Studying the Properties of Compressible Magnetohydrodynamic Turbulence Using Synchrotron Fluctuation Statistics
    Wang, Ru-Yue
    Zhang, Jian-Fu
    Lazarian, Alex
    Xiao, Hua-Ping
    Xiang, Fu-Yuan
    ASTROPHYSICAL JOURNAL, 2022, 940 (02)
  • [25] MEASUREMENT OF INTERMITTENCY OF ANISOTROPIC MAGNETOHYDRODYNAMIC TURBULENCE IN HIGH-SPEED SOLAR WIND
    Luo, Q. Y.
    Wu, D. J.
    Yang, L.
    ASTROPHYSICAL JOURNAL LETTERS, 2011, 733 (02)
  • [26] Do magnetic fields enhance turbulence at low magnetic Reynolds number?
    Potherat, Alban
    Klein, Rico
    PHYSICAL REVIEW FLUIDS, 2017, 2 (06):
  • [27] Theoretical study of anisotropic MHD turbulence with low magnetic Reynolds number
    Sukoriansky, Semion
    Zemach, Efi
    PHYSICA SCRIPTA, 2016, 91 (03)
  • [28] Some results on the Reynolds number scaling of pressure statistics in isotropic turbulence
    Donzis, D. A.
    Sreenivasan, K. R.
    Yeung, P. K.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (03) : 164 - 168
  • [29] Effective viscosity, resistivity, and Reynolds number in weakly collisional plasma turbulence
    Yang, Yan
    Matthaeus, William H.
    Oughton, Sean
    Bandyopadhyay, Riddhi
    Pecora, Francesco
    Parashar, Tulasi N.
    Roytershteyn, Vadim
    Chasapis, Alexandros
    Shay, Michael A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (04) : 6119 - 6128
  • [30] Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence
    Sahoo, Ganapati
    Perlekar, Prasad
    Pandit, Rahul
    NEW JOURNAL OF PHYSICS, 2011, 13