ALGEBRAICITY OF THE METRIC TANGENT CONES AND EQUIVARIANT K-STABILITY

被引:35
作者
Li, Chi [1 ,2 ]
Wang, Xiaowei [3 ]
Xu, Chenyang [4 ,5 ,6 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] BICMR, Beijing 100871, Peoples R China
[5] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Princeton Univ, Princeton, NJ 08544 USA
关键词
KAHLER-EINSTEIN METRICS; VOLUME; SINGULARITIES; VALUATION; MANIFOLDS; EXISTENCE; SEMISTABILITY; VARIETIES; IDEALS; SPACES;
D O I
10.1090/jams/974
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two new results on the K-polystability of Q-Fano varieties based on purely algebro-geometric arguments. The first one says that any -semistable log Fano cone has a special degeneration to a uniquely determined K-polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, K-polystability is equivalent to equivariant K-polystability, that is, to check K-polystability, it is sufficient to check special test configurations which are equivariant under the torus action.. © 2021 American Mathematical Society.
引用
收藏
页码:1175 / 1214
页数:40
相关论文
共 48 条
[1]   Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties [J].
Berman, Robert J. ;
Boucksom, Sebastien ;
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 :27-89
[2]   K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics [J].
Berman, Robert J. .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :973-1025
[3]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[4]   Existence of valuations with smallest normalized volume [J].
Blum, Harold .
COMPOSITIO MATHEMATICA, 2018, 154 (04) :820-849
[5]  
Boucksom S, 2015, LOND MATH S, V417, P29
[6]  
Boucksom S, 2017, J ECOLE POLYTECH-MAT, V4, P87, DOI 10.5802/jep.39
[7]  
Boucksom S, 2017, ANN I FOURIER, V67, P743
[8]   Kahler-Ricci flow, Kahler-Einstein metric, and K-stability [J].
Chen, Xiuxiong ;
Sun, Song ;
Wang, Bing .
GEOMETRY & TOPOLOGY, 2018, 22 (06) :3145-3173
[9]   K-SEMISTABILITY FOR IRREGULAR SASAKIAN MANIFOLDS [J].
Collins, Tristan C. ;
Szekelyhidi, Gabor .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 109 (01) :81-109
[10]   Kahler-Einstein metrics along the smooth continuity method [J].
Datar, Ved ;
Szekelyhidi, Gabor .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (04) :975-1010