In this work, direct effects of cytosolic polyamines on the two principle vacuolar ion channels were studied by means of patch-clamp technique. Fast and slow activating vacuolar channels were analyzed on membrane patches isolated from vacuoles of the red beet taproot. The potency of the fast and of the slow vacuolar channel blockage by polyamines decreased with a decrease of the polycation charge, spermine(4+) > spermidine(3+) > putrescine(2+). In contrast to the inhibition of the fast vacuolar channel, the blockage of the slow vacuolar channel by polyamines displayed a pronounced voltage-dependence. Hence, in the presence of high concentration of polyamines the slow vacuolar channel was converted into a strong inward rectifier as evidenced by its unitary current-voltage characteristic. The blockage of the slow vacuolar channel by polyamines was relieved at a large depolarization, in line with the permeation of polyamines through this channel. The voltage-dependence of blockage was analyzed in terms of the conventional model, assuming a single binding site for polyamines within the channel pore. Taking advantage of a simple linear structure of naturally occurring polyamines, conclusions on a possible architecture of the slow vacuolar channel pore were drawn. The role of common polyamines in regulation of vacuolar ion transport was discussed.