The Laguerre pseudospectral method for the two-dimensional Schrodinger equation with symmetric nonseparable potentials

被引:3
作者
Alici, Haydar [1 ]
机构
[1] Harran Univ, Dept Math, TR-63290 Sanliurfa, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2020年 / 49卷 / 02期
关键词
the Laguerre pseudospectral method; two dimensional Schrodinger equation; symmetric potentials; SPECTRAL METHODS; INTERPOLATION; EIGENVALUES;
D O I
10.15672/hujms.459593
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hermite pseudospectral method is one of the natural techniques for the numerical treatment of the problems defined over unbounded domains such as two-dimensional time-independent Schrodinger equation on the whole real plane. However, it is shown here that for the symmetric potentials, transformation of the problem over the first quadrant and the application of the Laguerre pseudospectral method reduce the cost by a factor of four when compared to the Hermite pseudospectral method.
引用
收藏
页码:539 / 552
页数:14
相关论文
共 50 条
[21]   Novel bound states treatment of the two dimensional Schrodinger equation with pseudocentral potentials plus multiparameter noncentral potential [J].
Aktas, Metin .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (09) :1831-1842
[22]   The solution of the Schrodinger equation for coupled quadratic and quartic potentials in two dimensions [J].
Singh, Ram Mehar ;
Chand, Fakir ;
Mishra, S. C. .
PRAMANA-JOURNAL OF PHYSICS, 2009, 72 (04) :647-654
[23]   A Flexible Symplectic Scheme for Two-Dimensional Schrodinger Equation with Highly Accurate RBFs Quasi-Interpolation [J].
Zhang, Shengliang ;
Zhang, Liping .
FILOMAT, 2019, 33 (17) :5451-5461
[24]   Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order [J].
Shah, Farman Ali ;
Kamran ;
Santina, Dania ;
Mlaiki, Nabil ;
Aljawi, Salma .
NETWORKS AND HETEROGENEOUS MEDIA, 2024, 19 (01) :44-85
[25]   An efficient Fourier-Laguerre spectral-Galerkin method for exterior problems of two-dimensional complex obstacles [J].
Yao, G-Q. ;
Wen, X. ;
Wang, Z-Q. .
APPLIED NUMERICAL MATHEMATICS, 2023, 193 :93-108
[26]   Symmetry breaking of solitons in two-dimensional complex potentials [J].
Yang, Jianke .
PHYSICAL REVIEW E, 2015, 91 (02)
[27]   An efficient meshless numerical method with the error estimate for two-dimensional Schrödinger equation [J].
Habibirad, Ali ;
Baghani, Omid ;
Azin, Hadis ;
Zaferanieh, Mehdi ;
Inc, Mustafa .
APPLIED NUMERICAL MATHEMATICS, 2024, 202 :143-157
[28]   Fourier Method for One-dimensional Schrodinger Operators with Singular Periodic Potentials [J].
Djakov, Plamen ;
Mityagin, Boris .
TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 :195-+
[29]   On the finite-differences schemes for the numerical solution of two dimensional Schrodinger equation [J].
Subasi, M .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (06) :752-758
[30]   Two-dimensional Hermitian numerical manifold method [J].
Liu, Zhijun ;
Zhang, Peng ;
Sun, Cong ;
Liu, Feng .
COMPUTERS & STRUCTURES, 2020, 229