On q-Ary Shortened-1-Perfect-Like Codes

被引:1
作者
Shi, Minjia [1 ]
Wu, Rongsheng [2 ]
Krotov, Denis S. [3 ]
机构
[1] Anhui Univ, Sch Math Sci, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hamming graph; multifold packings; multiple coverings; perfect codes; PERFECT CODES; BINARY-CODES; PARAMETERS;
D O I
10.1109/TIT.2022.3187004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study codes with parameters of q-ary shortened Hamming codes, i.e., (n = (q(m) - q) / (q - 1), q(n-m), 3)(q). Firstly, we prove the fact mentioned in 1998 by Brouwer et al. that such codes are optimal, generalizing it to a bound for multifold packings of radius-1 balls, with a corollary for multiple coverings. In particular, we show that the punctured Hamming code is an optimal q-fold packing with minimum distance 2. Secondly, for every admissible length starting from n = 20, we show the existence of 4-ary codes with parameters of shortened 1-perfect codes that cannot be obtained by shortening a 1-perfect code.
引用
收藏
页码:7100 / 7106
页数:7
相关论文
共 21 条
[11]   On the Classification of MDS Codes [J].
Kokkala, Janne I. ;
Krotov, Denis S. ;
Ostergard, Patric R. J. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (12) :6485-6492
[12]   On Multifold Packings of Radius-1 Balls in Hamming Graphs [J].
Krotov, Denis S. ;
Potapov, Vladimir N. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) :3585-3598
[13]   On the binary codes with parameters of triply-shortened 1-perfect codes [J].
Krotov, Denis S. .
DESIGNS CODES AND CRYPTOGRAPHY, 2012, 64 (03) :275-283
[14]   On Optimal Binary One-Error-Correcting Codes of Lengths 2m-4 and 2m-3 [J].
Krotov, Denis S. ;
Ostergard, Patric R. J. ;
Pottonen, Olli .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (10) :6771-6779
[15]   On the binary codes with parameters of doubly-shortened 1-perfect codes [J].
Krotov, Denis S. .
DESIGNS CODES AND CRYPTOGRAPHY, 2010, 57 (02) :181-194
[16]  
MacWilliams F. J., 1977, The theory of error-correcting codes. II
[17]   COMPLETELY REGULAR CODES [J].
NEUMAIER, A .
DISCRETE MATHEMATICS, 1992, 106 :353-360
[18]   Two optimal one-error-correcting codes of length 13 that are not doubly shortened perfect codes [J].
Ostergard, Patric R. J. ;
Pottonen, Olli .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 59 (1-3) :281-285
[19]  
Resch N, 2020, THESIS CARNEGIE MELL
[20]   On non-full-rank perfect codes over finite fields [J].
Romanov, Alexander M. .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) :995-1003