On q-Ary Shortened-1-Perfect-Like Codes

被引:1
作者
Shi, Minjia [1 ]
Wu, Rongsheng [2 ]
Krotov, Denis S. [3 ]
机构
[1] Anhui Univ, Sch Math Sci, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hamming graph; multifold packings; multiple coverings; perfect codes; PERFECT CODES; BINARY-CODES; PARAMETERS;
D O I
10.1109/TIT.2022.3187004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study codes with parameters of q-ary shortened Hamming codes, i.e., (n = (q(m) - q) / (q - 1), q(n-m), 3)(q). Firstly, we prove the fact mentioned in 1998 by Brouwer et al. that such codes are optimal, generalizing it to a bound for multifold packings of radius-1 balls, with a corollary for multiple coverings. In particular, we show that the punctured Hamming code is an optimal q-fold packing with minimum distance 2. Secondly, for every admissible length starting from n = 20, we show the existence of 4-ary codes with parameters of shortened 1-perfect codes that cannot be obtained by shortening a 1-perfect code.
引用
收藏
页码:7100 / 7106
页数:7
相关论文
共 21 条
[1]   TRIPLY SHORTENED BINARY HAMMING CODE IS OPTIMAL [J].
BEST, MR ;
BROUWER, AE .
DISCRETE MATHEMATICS, 1977, 17 (03) :235-245
[2]   Every binary (2m-2, 22(m)-2-m, 3) code can be lengthened to form a perfect code of length 2m-1 [J].
Blackmore, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :698-700
[3]   On Completely Regular Codes [J].
Borges, J. ;
Rifa, J. ;
Zinoviev, V. A. .
PROBLEMS OF INFORMATION TRANSMISSION, 2019, 55 (01) :1-45
[4]   Bounds on mixed binary/ternary codes [J].
Brouwer, AE ;
Hamalainen, HO ;
Ostergard, PRJ ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :140-161
[5]  
DELSARTE P, 1973, PHILIPS RES REP, P1
[6]   On perfect codes and tilings: Problems and solutions [J].
Etzion, T ;
Vardy, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (02) :205-223
[7]  
Goethals J. M., 1975, PHILIPS RES REPORTS, V30
[8]  
Guruswami V, 2005, LIST DECODING ERROR, V3282
[9]   NEW CONSTRUCTION OF GROUP AND NON-GROUP PERFECT CODES [J].
HEDEN, O .
INFORMATION AND CONTROL, 1977, 34 (04) :314-323
[10]   Sudoku-like arrays, codes and orthogonality [J].
Huggan, M. ;
Mullen, G. L. ;
Stevens, B. ;
Thomson, D. .
DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (03) :675-693