Adversarial Learning for Cross-Project Semi-Supervised Defect Prediction

被引:12
|
作者
Sun, Ying [1 ]
Jing, Xiao-Yuan [1 ,2 ,3 ]
Wu, Fei [2 ]
Li, Juanjuan [2 ]
Xing, Danlei [1 ]
Chen, Haowen [3 ]
Sun, Yanfei [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Data models; Predictive models; Machine learning; Correlation; Sun; Gallium nitride; Prediction algorithms; Cross-project defect prediction; adversarial learning; semi-supervised learning; NEURAL-NETWORKS; FRAMEWORK; MODELS; CODE;
D O I
10.1109/ACCESS.2020.2974527
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-project defect prediction (CPDP) aims to build a prediction model on existing source projects and predict the labels of target project. The data distribution difference between different projects makes CPDP very challenging. Besides, most existing CPDP methods usually require sufficient and labeled data. However, acquiring lots of labeled data for a new project is difficult while obtaining the unlabeled data is relatively easy. A desirable approach is building a prediction model on unlabeled data and labeled data. CPDP in this scenario is called cross-project semi-supervised defect prediction (CSDP). Recently, generative adversarial networks have achieved impressive results with these strong ability of learning data distribution and discriminative representation. For effectively learning the discriminative features of data from different projects, we propose a Discriminative Adversarial Feature Learning (DAFL) approach for CSDP. DAFL consists of feature transformer and project discriminator, which compete with each other. A feature transformer tries to generate feature representation, which learns the discriminant information and preserves intrinsic structure inferred from both labeled and unlabeled data. A project discriminator tries to discriminate source and target instances on the generated representation. Experiments on 16 projects show that DAFL performs significantly better than baselines.
引用
收藏
页码:32674 / 32687
页数:14
相关论文
共 50 条
  • [21] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [22] Cross-project smell-based defect prediction
    Sotto-Mayor, Bruno
    Kalech, Meir
    SOFT COMPUTING, 2021, 25 (22) : 14171 - 14181
  • [23] Semi-supervised lung nodule detection with adversarial learning
    He Q.
    Gao P.
    Zhang F.
    Bian G.
    Chen C.
    Multimedia Tools and Applications, 2025, 84 (4) : 1725 - 1744
  • [24] Manifold adversarial training for supervised and semi-supervised learning
    Zhang, Shufei
    Huang, Kaizhu
    Zhu, Jianke
    Liu, Yang
    NEURAL NETWORKS, 2021, 140 : 282 - 293
  • [25] Fine-Grained Adversarial Semi-Supervised Learning
    Mugnai, Daniele
    Pernici, Federico
    Turchini, Francesco
    Del Bimbo, Alberto
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (01)
  • [26] Sample-based software defect prediction with active and semi-supervised learning
    Li, Ming
    Zhang, Hongyu
    Wu, Rongxin
    Zhou, Zhi-Hua
    AUTOMATED SOFTWARE ENGINEERING, 2012, 19 (02) : 201 - 230
  • [27] Assessing the Effect of Imbalanced Learning on Cross-project Software Defect Prediction
    Sohan, Md Fahimuzzman
    Jabiullah, Md Ismail
    Rahman, Sheikh Shah Mohammad Motiur
    Mahmud, S. M. Hasan
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [28] An investigation on the feasibility of cross-project defect prediction
    Zhimin He
    Fengdi Shu
    Ye Yang
    Mingshu Li
    Qing Wang
    Automated Software Engineering, 2012, 19 : 167 - 199
  • [29] WIFLF: An approach independent of the target project for cross-project defect prediction
    Cui, Can
    Liu, Bin
    Wang, Shihai
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2022, 34 (12)
  • [30] Research on Cross-Project Software Defect Prediction Based on Machine Learning
    Wang, Baoping
    Wang, Wennan
    Zhu, Linkai
    Liu, Wenjian
    ADVANCES IN WEB-BASED LEARNING - ICWL 2021, 2021, 13103 : 160 - 165