Adversarial Learning for Cross-Project Semi-Supervised Defect Prediction

被引:12
|
作者
Sun, Ying [1 ]
Jing, Xiao-Yuan [1 ,2 ,3 ]
Wu, Fei [2 ]
Li, Juanjuan [2 ]
Xing, Danlei [1 ]
Chen, Haowen [3 ]
Sun, Yanfei [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Data models; Predictive models; Machine learning; Correlation; Sun; Gallium nitride; Prediction algorithms; Cross-project defect prediction; adversarial learning; semi-supervised learning; NEURAL-NETWORKS; FRAMEWORK; MODELS; CODE;
D O I
10.1109/ACCESS.2020.2974527
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-project defect prediction (CPDP) aims to build a prediction model on existing source projects and predict the labels of target project. The data distribution difference between different projects makes CPDP very challenging. Besides, most existing CPDP methods usually require sufficient and labeled data. However, acquiring lots of labeled data for a new project is difficult while obtaining the unlabeled data is relatively easy. A desirable approach is building a prediction model on unlabeled data and labeled data. CPDP in this scenario is called cross-project semi-supervised defect prediction (CSDP). Recently, generative adversarial networks have achieved impressive results with these strong ability of learning data distribution and discriminative representation. For effectively learning the discriminative features of data from different projects, we propose a Discriminative Adversarial Feature Learning (DAFL) approach for CSDP. DAFL consists of feature transformer and project discriminator, which compete with each other. A feature transformer tries to generate feature representation, which learns the discriminant information and preserves intrinsic structure inferred from both labeled and unlabeled data. A project discriminator tries to discriminate source and target instances on the generated representation. Experiments on 16 projects show that DAFL performs significantly better than baselines.
引用
收藏
页码:32674 / 32687
页数:14
相关论文
共 50 条
  • [1] Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning
    Xing, Danlei
    Wu, Fei
    Sun, Ying
    Jing, Xiao-Yuan
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (10) : 2237 - 2240
  • [2] Cross-project Defect Prediction Method Using Adversarial Learning
    Xing Y.
    Qian X.-M.
    Guan Y.
    Zhang S.-H.
    Zhao M.-C.
    Lin W.-T.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (06): : 2097 - 2112
  • [3] Adversarial domain adaptation for cross-project defect prediction
    Song, Hengjie
    Wu, Guobin
    Ma, Le
    Pan, Yufei
    Huang, Qingan
    Jiang, Siyu
    EMPIRICAL SOFTWARE ENGINEERING, 2023, 28 (05)
  • [4] Adversarial domain adaptation for cross-project defect prediction
    Hengjie Song
    Guobin Wu
    Le Ma
    Yufei Pan
    Qingan Huang
    Siyu Jiang
    Empirical Software Engineering, 2023, 28
  • [5] Revisiting Supervised and Unsupervised Methods for Effort-Aware Cross-Project Defect Prediction
    Ni, Chao
    Xia, Xin
    Lo, David
    Chen, Xiang
    Gu, Qing
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2022, 48 (03) : 786 - 802
  • [6] An Adversarial Discriminative Convolutional Neural Network for Cross-Project Defect Prediction
    Sheng, Lei
    Lu, Lu
    Lin, Junhao
    IEEE ACCESS, 2020, 8 : 55241 - 55253
  • [7] Cross-Resolution Semi-Supervised Adversarial Learning for Pansharpening
    Yang, Guishuo
    Zhang, Kai
    Zhang, Feng
    Wang, Jian
    Sun, Jiande
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] DeepCPDP: Deep Learning Based Cross-Project Defect Prediction
    Chen, Deyu
    Chen, Xiang
    Li, Hao
    Xie, Junfeng
    Mu, Yanzhou
    IEEE ACCESS, 2019, 7 : 184832 - 184848
  • [9] A Survey on Transfer Learning for Cross-Project Defect Prediction
    Sotto-Mayor, Bruno
    Kalech, Meir
    IEEE ACCESS, 2024, 12 : 93398 - 93425
  • [10] Adversarial Semi-Supervised Learning for Diagnosing Faults and Attacks in Power Grids
    Farajzadeh-Zanjani, Maryam
    Hallaji, Ehsan
    Razavi-Far, Roozbeh
    Saif, Mehrdad
    Parvania, Masood
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (04) : 3468 - 3478