Realization and synthesis of reversible functions

被引:6
作者
Yang, Guowu [4 ]
Xie, Fei [1 ]
Hung, William N. N. [2 ]
Song, Xiaoyu [3 ]
Perkowski, Marek A. [3 ]
机构
[1] Portland State Univ, Dept Comp Sci, Portland, OR 97207 USA
[2] Synopsys Inc, Mountain View, CA 94043 USA
[3] Portland State Univ, Dept Elect & Comp Engn, Portland, OR 97207 USA
[4] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Sichuan, Peoples R China
关键词
Reversible logic; Group theory; Permutation;
D O I
10.1016/j.tcs.2010.11.031
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Reversible circuits play an important role in quantum computing. This paper studies the realization problem of reversible circuits. For any n-bit reversible function, we present a constructive synthesis algorithm. Given any n-bit reversible function, there are N distinct input patterns different from their corresponding outputs, where N <= 2(n), and the other (2(n) - N) input patterns will be the same as their outputs. We show that this circuit can be synthesized by at most 2n . N '(n - 1)'-CNOT gates and 4n(2) . N NOT gates. The time and space complexities of the algorithm are Omega(n . 4(n)) and Omega(n . 2(n)), respectively. The computational complexity of our synthesis algorithm is exponentially lower than that of breadth-first search based synthesis algorithms. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1606 / 1613
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 1999, Journal of Universal Computer Science
[2]   LOGICAL REVERSIBILITY OF COMPUTATION [J].
BENNETT, CH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (06) :525-532
[3]  
Bogart Kenneth P., 1990, Introductory Combinatorics
[4]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[5]  
De Vos A, 2002, J PHYS A-MATH GEN, V35, P7063, DOI 10.1088/0305-4470/35/33/307
[6]   Reversible computing [J].
De Vos, A .
PROGRESS IN QUANTUM ELECTRONICS, 1999, 23 (01) :1-49
[7]   QUANTUM COMPUTATIONAL NETWORKS [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 425 (1868) :73-90
[8]  
Dixon J. D., 1996, Graduate Text in Mathematics, V163
[9]  
DUECK GW, 2003, P 6 INT S REPR METH
[10]   CONSERVATIVE LOGIC [J].
FREDKIN, E ;
TOFFOLI, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (3-4) :219-253