Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains

被引:57
作者
Cheng, Qiuming [1 ]
机构
[1] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[2] York Univ, Dept Geog, Dept Earth & Space Sci & Engn, N York, ON M3J 1P3, Canada
关键词
D O I
10.5194/npg-14-293-2007
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The patterns shown on two-dimensional images (fields) used in geosciences reflect the end products of geo-processes that occurred on the surface and in the subsurface of the Earth. Anisotropy of these types of patterns can provide information useful for interpretation of geo-processes and identification of features in the mapped area. Quantification of the anisotropy property is therefore essential for image processing and interpretation. This paper introduces several techniques newly developed on the basis of multifractal modeling in space, Fourier frequency, and eigen domains, respectively. A singularity analysis method implemented in the space domain can be used to quantify the intensity and anisotropy of local singularities. The second method, called S-A. characterizes the generalized scale invariance property of a field in the Fourier frequency domain. The third method characterizes the field using a power-law model on the basis of eigenvalues and eigenvectors of the field. The applications of these methods are demonstrated with a case study of Environment Scan Electric Microscope (ESEM) microimages for identification of sphalerite (ZnS) ore minerals from the Jinding Pb/Zn/Ag mineral deposit in Shangjiang District, Yunnan Province, China.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 38 条
  • [1] Agterberg F, 2005, GIS and Spatial Analysis, Vol 1and 2, P291
  • [2] AGTERBERG F., 1995, International Geology Review, V37, P1, DOI DOI 10.1080/00206819509465388
  • [3] AGTERBERG FP, 1984, MATH GEOL, V52, P1661
  • [4] BADII R, 1985, J STAT PHYS, V40, P725, DOI 10.1007/BF01009897
  • [5] CHAO L, 2005, P IAMG GIS SPAT AN, V1, P303
  • [6] The gliding box method for multifractal modeling
    Chen, QM
    [J]. COMPUTERS & GEOSCIENCES, 1999, 25 (09) : 1073 - 1079
  • [7] NEURAL NETWORKS - A REVIEW FROM A STATISTICAL PERSPECTIVE
    CHENG, B
    TITTERINGTON, DM
    [J]. STATISTICAL SCIENCE, 1994, 9 (01) : 2 - 30
  • [8] Cheng Q., 1999, P 5 ANN C INT ASS MA, V1, P87
  • [9] Cheng Q., 2000, MAT TRAIN WORKSH GEO
  • [10] CHENG Q, 2001, EARTH SCI J CHINA U, V12, P54