Chirped envelope optical solitons for Kaup-Newell equation

被引:38
作者
Triki, Houria [1 ]
Biswas, Anjan [2 ,3 ]
Zhou, Qin [4 ]
Moshokoa, Seithuti P. [3 ]
Belic, Milivoj [5 ]
机构
[1] Badji Mokhtar Univ, Dept Phys, Radiat Phys Lab, Fac Sci, POB 12, Annaba 23000, Algeria
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[5] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2019年 / 177卷
基金
中国国家自然科学基金;
关键词
Envelope solitons; Kaup-Newell equation; PULSES; FIBERS;
D O I
10.1016/j.ijleo.2018.09.137
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the Kaup-Newell equation that represents one of the forms of derivative nonlinear Schrodinger equation. The model applies to the description of sub-pico-second pulse propagation through an optical fiber. A special complex envelope traveling-wave method is applied to find a nonlinear equation with a fifth-degree nonlinear term describing the dynamics of field amplitude in the nonlinear media. It is shown that the phase associated to the obtained pulses has a non-trivial form and possesses two intensity dependent chirping terms in addition to the simplest linear contribution. A class of soliton solutions of the bright, dark and singular type are derived for the first time. The requirements concerning the optical material parameters for the existence of these chirped structures are also discussed.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 10 条
[1]   Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrodinger equation with self-steepening and self-frequency shift [J].
Alka ;
Goyal, Amit ;
Gupta, Rama ;
Kumar, C. N. ;
Raju, Thokala Soloman .
PHYSICAL REVIEW A, 2011, 84 (06)
[2]  
Arshed S., 2018, OPTIK
[3]   Soliton perturbation theory for Alfven waves in plasmas [J].
Biswas, A .
PHYSICS OF PLASMAS, 2005, 12 (02) :022306-1
[4]   Sub-pico-second chirped optical solitons in mono-mode fibers with Kaup-Newell equation by extended trial function method [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Alqahtani, Rubayyi T. .
OPTIK, 2018, 168 :208-216
[5]   Sub pico-second pulses in mono-mode optical fibers with Kaup-Newell equation by a couple of integration schemes [J].
Biswasa, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 167 :121-128
[6]  
Desaix M, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056602
[7]   Exact self-similar solutions of the generalized nonlinear schrodinger equation with distributed coefficients [J].
Kruglov, VI ;
Peacock, AC ;
Harvey, JD .
PHYSICAL REVIEW LETTERS, 2003, 90 (11) :4
[8]   Chirped soliton solutions for the generalized nonlinear Schrodinger equation with polynomial nonlinearity and non-Kerr terms of arbitrary order [J].
Triki, Houria ;
Porsezian, K. ;
Grelu, Philippe .
JOURNAL OF OPTICS, 2016, 18 (07)
[9]   Chirped solitary pulses for a nonic nonlinear Schrodinger equation on a continuous-wave background [J].
Triki, Houria ;
Porsezian, K. ;
Choudhuri, Amitava ;
Dinda, P. Tchofo .
PHYSICAL REVIEW A, 2016, 93 (06)
[10]   Chirped femtosecond pulses in the higher-order nonlinear Schrodinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities [J].
Triki, Houria ;
Biswas, Anjan ;
Milovic, Daniela ;
Belic, Milivoj .
OPTICS COMMUNICATIONS, 2016, 366 :362-369