Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging

被引:17
作者
Sahu, Pranoy [1 ]
Mazumder, Nirmal [2 ]
机构
[1] CNR, Inst Prot Biochem, Naples, Italy
[2] Manipal Acad Higher Educ, Manipal Sch Life Sci, Dept Biophys, Manipal 576104, Karnataka, India
关键词
Two-photon fluorescence microscopy; Brain imaging; Adaptive optics; WAVE-FRONT CORRECTION; IN-VIVO; SPHERICAL-ABERRATION; PYRAMIDAL NEURONS; RESOLUTION; DYNAMICS; LIFETIME; CORTEX; ACTIVATION; EXCITATION;
D O I
10.1007/s10103-019-02908-z
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep tissue imaging using two-photon fluorescence (TPF) techniques have revolutionized the optical imaging community by providing in depth molecular information at the single-cell level. These techniques provide structural and functional aspects of mammalian brain at unprecedented depth and resolution. However, wavefront distortions introduced by the optical system as well as the biological sample (tissue) limit the achievable fluorescence signal-to-noise ratio and resolution with penetration depth. In this review, we discuss on the advances in TPF microscopy techniques for in vivo functional imaging and offer guidelines as to which technologies are best suited for different imaging applications with special reference to adaptive optics.
引用
收藏
页码:317 / 328
页数:12
相关论文
共 79 条
  • [1] Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy
    Abdeladim, Lamiae
    Matho, Katherine S.
    Clavreul, Solene
    Mahou, Pierre
    Sintes, Jean-Marc
    Solinas, Xavier
    Arganda-Carreras, Ignacio
    Turney, Stephen G.
    Lichtman, Jeff W.
    Chessel, Anatole
    Bemelmans, Alexis-Pierre
    Loulier, Karine
    Supatto, Willy
    Livet, Jean
    Beaurepaire, Emmanuel
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [2] Overcoming the penetration depth limit in optical microscopy: Adaptive optics and wavefront shaping
    Ahn, Cheolwoo
    Hwang, Byungjae
    Nam, Kibum
    Jin, Hyungwon
    Woo, Taeseong
    Park, Jung-Hoon
    [J]. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2019, 12 (04)
  • [3] Anatomical and physiological plasticity of dendritic spines
    Alvarez, Veronica A.
    Sabatini, Bernardo L.
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 2007, 30 : 79 - 97
  • [4] [Anonymous], 2018, Elife, DOI DOI 10.7554/ELIFE.32671
  • [5] [Anonymous], 2015, NAT COMMUN
  • [6] Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy
    Aviles-Espinosa, Rodrigo
    Andilla, Jordi
    Porcar-Guezenec, Rafael
    Olarte, Omar E.
    Nieto, Marta
    Levecq, Xavier
    Artigas, David
    Loza-Alvarez, Pablo
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (11): : 3135 - 3149
  • [7] Correction-free remotely scanned two-photon in vivo mouse retinal imaging
    Bar-Noam, Adi Schejter
    Farah, Nairouz
    Shoham, Shy
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2016, 5 : e16007 - e16007
  • [8] Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy
    Barretto, Robert P. J.
    Ko, Tony H.
    Jung, Juergen C.
    Wang, Tammy J.
    Capps, George
    Waters, Allison C.
    Ziv, Yaniv
    Attardo, Alessio
    Recht, Lawrence
    Schnitzer, Mark J.
    [J]. NATURE MEDICINE, 2011, 17 (02) : 223 - U120
  • [9] Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging
    Bednarkiewicz, Artur
    Bouhifd, Mounir
    Whelan, Maurice P.
    [J]. APPLIED OPTICS, 2008, 47 (09) : 1193 - 1199
  • [10] Improved deep two-photon calcium imaging in vivo
    Birkner, Antje
    Tischbirek, Carsten H.
    Konnerth, Arthur
    [J]. CELL CALCIUM, 2017, 64 : 29 - 35