A scanning dynamic collimator for spot-scanning proton minibeam production

被引:13
作者
Sotiropoulos, Marios [1 ]
Prezado, Yolanda [1 ]
机构
[1] Univ PSL, Inst Curie, CNRS UMR3347, Inserm U1021,Signalisat Radiobiol & Canc, F-91400 Orsay, France
基金
欧洲研究理事会;
关键词
TOPAS;
D O I
10.1038/s41598-021-97941-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In proton minibeam radiation therapy, proton minibeams are typically produced by modulating a uniform field using a multislit collimator. Multislit collimators produce minibeams of fixed length and width, and a new collimator has to be manufactured each time a new minibeam array is required, limiting its flexibility. In this work, we propose a scanning dynamic collimator for the generation of proton minibeams arrays. The new collimator system proposed is able to produce any minibeam required on an on-line basis by modulating the pencil beam spots of modern proton therapy machines, rather than a uniform field. The new collimator is evaluated through Monte Carlo simulations and the produced proton minibeams are compared with that of a multislit collimator. Furthermore, a proof of concept experiment is conducted to demonstrate the feasibility of producing a minibeam array by repositioning (i.e. scanning) a collimator. It is concluded that besides the technical challenges, the new collimator design is producing equivalent minibeam arrays to the multislit collimator, whilst is flexible to produce any minibeam array desired.
引用
收藏
页数:11
相关论文
共 24 条
[1]  
Charyyev S., 2020, RAD PROT DOSIMETRY, P1
[2]   Characterization of a mini-multileaf collimator in a proton beamline [J].
Daartz, J. ;
Bangert, M. ;
Bussiere, M. R. ;
Engelsman, M. ;
Kooy, H. M. .
MEDICAL PHYSICS, 2009, 36 (05) :1886-1894
[3]   A superconducting multipole lens for focusing high energy ions [J].
Datzmann, G ;
Dollinger, G ;
Hinderer, G ;
Körner, HJ .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1999, 158 (1-4) :74-80
[4]   Experimental characterisation of a proton kernel model for pencil beam scanning techniques [J].
De Marzi, L. ;
Da Fonseca, A. ;
Moignier, C. ;
Patriarca, A. ;
Goudjil, F. ;
Mazal, A. ;
Buvat, I ;
Herault, J. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2019, 64 :195-203
[5]   Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study [J].
De Marzi, Ludovic ;
Patriarca, Annalisa ;
Nauraye, Catherine ;
Hierso, Eric ;
Dendale, Remi ;
Guardiola, Consuelo ;
Prezado, Yolanda .
MEDICAL PHYSICS, 2018, 45 (11) :5305-5316
[6]   Charged Particle Therapy with Mini-Segmented Beams [J].
Dilmanian, F. Avraham ;
Eley, John G. ;
Rusek, Adam ;
Krishnan, Sunil .
FRONTIERS IN ONCOLOGY, 2015, 5
[7]   The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research [J].
Faddegon, Bruce ;
Ramos-Mendez, Jose ;
Schuemann, Jan ;
McNamara, Aimee ;
Shin, Jungwook ;
Perl, Joseph ;
Paganetti, Harald .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 72 :114-121
[8]   Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model [J].
Girst, Stefanie ;
Greubel, Christoph ;
Reindl, Judith ;
Siebenwirth, Christian ;
Zlobinskaya, Olga ;
Walsh, Dietrich W. M. ;
Ilicic, Katarina ;
Aichler, Michaela ;
Walch, Axel ;
Wilkens, Jan J. ;
Multhoff, Gabriele ;
Dollinger, Guenther ;
Schmid, Thomas E. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 95 (01) :234-241
[9]   Verification of a Monte Carlo dose calculation engine in proton minibeam radiotherapy in a passive scattering beamline for preclinical trials [J].
Guardiola, Consuelo ;
De Marzi, Ludovic ;
Prezado, Yolanda .
BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1107)
[10]   Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy [J].
Guardiola, Consuelo ;
Peucelle, Cecile ;
Prezado, Yolanda .
MEDICAL PHYSICS, 2017, 44 (04) :1470-1478