PROBABILISTIC ANALYSIS OF A CLASS OF IMPULSIVE LINEAR RANDOM DIFFERENTIAL EQUATIONS FORCED BY STOCHASTIC PROCESSES ADMITTING KARHUNEN-LOEVE EXPANSIONS

被引:5
作者
Cortes, Juan C. [1 ]
Delgadillo-Aleman, Sandra E. [2 ]
Ku-Carrillo, Roberto A. [2 ]
Villanueva, Rafael J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Ave Univ 940, Aguascalientes 20131, Aguascalientes, Mexico
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2022年 / 15卷 / 11期
关键词
Random differential equation; Dirac's delta impulses; Karhunen-Loeve expansion; Wiener process; UNCERTAINTIES; SUBJECT; MODEL;
D O I
10.3934/dcdss.2022079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a full randomization of the complete linear differential equation subject to an infinite train of Dirac's delta functions applied at different time instants. The initial condition and coefficients of the differential equation are assumed to be absolutely continuous random variables, while the external or forcing term is a stochastic process. We first approximate the forcing term using the Karhunen-Loeve expansion, and then we take advantage of the Random Variable Transformation method to construct a formal approximation of the first probability density function (1-p.d.f.) of the solution. By imposing mild conditions on the model parameters, we prove the convergence of the aforementioned approximation to the exact 1-p.d.f. of the solution. All the theoretical findings are illustrated by means of two examples, where different types of probability distributions are assumed to model parameters.
引用
收藏
页码:3131 / 3153
页数:23
相关论文
共 34 条
  • [1] NONLINEAR STOCHASTIC MARKOV PROCESSES AND MODELING UNCERTAINTY IN POPULATIONS
    Banks, H. Thomas
    Hu, Shuhua
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (01) : 1 - 25
  • [2] Braumann Carlos A., 2019, Google-Books
  • [3] Mathematical model of pulsed immunotherapy for superficial bladder cancer
    Bunimovich-Mendrazitsky, Svetlana
    Byrne, Helen
    Stone, Lewi
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (07) : 2055 - 2076
  • [4] Mean square convergent numerical solutions of random fractional differential equations: Approximations of moments and density
    Burgos, C.
    Cortes, J-C
    Villafuerte, L.
    Villanueva, R-J
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 378
  • [5] Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay
    Caraballo, Tomas
    Cortes, J-C
    Navarro-Quiles, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 356 : 198 - 218
  • [6] On fuzzy uncertainties on the logistic equation
    Cecconello, M. S.
    Dorini, F. A.
    Haeser, G.
    [J]. FUZZY SETS AND SYSTEMS, 2017, 328 : 107 - 121
  • [7] Transmission dynamics and control of Ebola virus disease (EVD): a review
    Chowell, Gerardo
    Nishiura, Hiroshi
    [J]. BMC MEDICINE, 2014, 12
  • [8] Mean square numerical solution of random differential equations:: Facts and possibilities
    Cortes, J. C.
    Jodar, L.
    Villafuerte, L.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (07) : 1098 - 1106
  • [9] Computing the probability density function of non-autonomous first-order linear homogeneous differential equations with uncertainty
    Cortes, J. -C.
    Navarro-Quiles, A.
    Romero, J. -V.
    Rosello, M. -D.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 190 - 208
  • [10] Probabilistic analysis of a class of impulsive linear random differential equations via density functions
    Cortes, Juan-C
    Delgadillo-Aleman, Sandra E.
    Ku-Carrillo, Roberto A.
    Villanueva, Rafael-J
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 121