On Triply Periodic Wave Solutions for (2+1)-Dimensional Boussinesq Equation

被引:3
作者
Wang Jun-Min [1 ]
机构
[1] Henan Univ Finance & Law, Dept Math & Informat, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Hirota bilinear method; theta functions; periodic wave solutions; (2+1)-dimensional Boussinesq equation; EVOLUTION-EQUATIONS; SOLITON-SOLUTIONS; SYSTEM; TODA;
D O I
10.1088/0253-6102/57/4/07
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By employing Hirota bilinear method and Riemann theta functions of genus one, explicit triply periodic wave solutions for the (2+1)-dimensional Boussinesq equation are constructed under the Backlund transformation u = (1/6) (u(0) - 1) + 2 [ln f (x, y, t)] (xx), four kinds of triply periodic wave solutions are derived, and their long wave limit are discussed. The properties of one of the solutions are shown in Fig. 1.
引用
收藏
页码:563 / 567
页数:5
相关论文
共 33 条
[1]  
Abolowitz M. J., 1991, SOLITONS NONLINEAR E
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[3]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[4]   A class of doubly periodic waves for nonlinear evolution equations [J].
Chow, KW .
WAVE MOTION, 2002, 35 (01) :71-90
[5]   Periodic solutions for a system of four coupled nonlinear Schrodinger equations [J].
Chow, KW .
PHYSICS LETTERS A, 2001, 285 (5-6) :319-326
[6]   SUPERPOSITION OF SOLITONS AND DISCRETE EVOLUTION-EQUATIONS [J].
CHOW, KW .
PHYSICA SCRIPTA, 1994, 50 (03) :233-237
[7]   A CLASS OF EXACT, PERIODIC-SOLUTIONS OF NONLINEAR ENVELOPE EQUATIONS [J].
CHOW, KW .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4125-4137
[8]   On Doubly Periodic Standing Wave Solutions of the Coupled Higgs Field Equation [J].
Fan, E. G. ;
Chow, K. -W. ;
Li, J. -H. .
STUDIES IN APPLIED MATHEMATICS, 2012, 128 (01) :86-105
[9]   Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii's breaking soliton equation in (2+1) dimensions [J].
Fan, Engui ;
Hon, Y. C. .
PHYSICAL REVIEW E, 2008, 78 (03)
[10]   Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik-Novikov-Veselov equation [J].
Fan, Engui .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)