RNA processing in human mitochondria

被引:200
作者
Sanchez, Maria I. G. Lopez [1 ,2 ]
Mercer, Tim R. [3 ]
Davies, Stefan M. K. [1 ,2 ]
Shearwood, Anne-Marie J. [1 ,2 ]
Nygard, Karoline K. A. [1 ,2 ]
Richman, Tara R. [1 ,2 ]
Mattick, John S. [3 ]
Rackham, Oliver [1 ,2 ]
Filipovska, Aleksandra [1 ,2 ]
机构
[1] Univ Western Australia, Western Australian Inst Med Res, Perth, WA 6009, Australia
[2] Univ Western Australia, Med Res Ctr, Perth, WA 6009, Australia
[3] Univ Queensland, Inst Mol Biosci, Brisbane, Qld, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
RNA processing; tRNA; transcriptomics; mitochondria; CANCER SUSCEPTIBILITY GENE; HELA-CELLS; IN-VIVO; DNA; TRANSCRIPTION; EXPRESSION; IDENTIFICATION; MUTATIONS; PROTEINS; PATHWAY;
D O I
10.4161/cc.10.17.17060
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mammalian mitochondrial DNA is transcribed as precursor polycistronic transcripts containing 13 mRNAs, 2 rRNAs, punctuated by 22 tRNAs. The mechanisms involved in the excision of mitochondrial tRNAs from these polycistronic transcripts have remained largely unknown. We have investigated the roles of ELAC2, mitochondrial RNase P proteins 1 and 3, and pentatricopeptide repeat domain protein 1 in the processing of mitochondrial polycistronic transcripts. We used a deep sequencing approach to characterize the 5' and 3' ends of processed mitochondrial transcripts and provide a detailed map of mitochondrial tRNA processing sites affected by these proteins. We show that MRPP 1 and MRPP 3 process the 5' ends of tRNAs and the 5' unconventional, non tRNA containing site of the CO1 transcript. By contrast, we find that ELAC2 and PTCD1 affect the 3' end processing of tRNAs. Finally, we found that MRPP 1 is essential for transcript processing, RNA modification, translation and mitochondrial respiration.
引用
收藏
页码:2904 / 2916
页数:13
相关论文
共 36 条
  • [2] BRZEZNIAK LK, 2011, RNA BIOL IN PRESS, V8
  • [3] An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells
    Buerckstuemmer, Tilmann
    Bennett, Keiryn L.
    Preradovic, Adrijana
    Schutze, Gregor
    Hantschel, Oliver
    Superti-Furga, Giulio
    Bauch, Angela
    [J]. NATURE METHODS, 2006, 3 (12) : 1013 - 1019
  • [4] A TRIDECAMER DNA-SEQUENCE SUPPORTS HUMAN MITOCHONDRIAL RNA 3'-END FORMATION INVITRO
    CHRISTIANSON, TW
    CLAYTON, DA
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (10) : 4502 - 4509
  • [5] An RNA end tied to the cell cycle New ties to apoptosis and microRNA formation?
    Dominski, Zbigniew
    [J]. CELL CYCLE, 2010, 9 (07) : 1308 - 1312
  • [6] Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications
    Ebhardt, H. Alexander
    Tsang, Herbert H.
    Dai, Denny C.
    Liu, Yifeng
    Bostan, Babak
    Fahlman, Richard P.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (08) : 2461 - 2470
  • [7] Traces of post-transcriptional RNA modifications in deep sequencing data
    Findeiss, Sven
    Langenberger, David
    Stadler, Peter F.
    Hoffmann, Steve
    [J]. BIOLOGICAL CHEMISTRY, 2011, 392 (04) : 305 - 313
  • [8] Messenger RNA stability in mitochondria: different means to an end
    Gagliardi, D
    Stepien, PP
    Temperley, RJ
    Lightowlers, RN
    Chrzanowska-Lightowlers, ZMA
    [J]. TRENDS IN GENETICS, 2004, 20 (06) : 260 - 267
  • [9] The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria
    Haque, Md. Emdadul
    Grasso, Domenick
    Miller, Chaya
    Spremulli, Linda L.
    Saada, Ann
    [J]. MITOCHONDRION, 2008, 8 (03) : 254 - 261
  • [10] HAYASHI JI, 1994, J BIOL CHEM, V269, P19060