3D Printed Gene-Activated Sodium Alginate Hydrogel Scaffolds

被引:11
作者
Khvorostina, Maria A. [1 ,2 ]
Mironov, Anton, V [1 ]
Nedorubova, Irina A. [2 ]
Bukharova, Tatiana B. [2 ]
Vasilyev, Andrey V. [2 ,3 ]
Goldshtein, Dmitry, V [2 ]
Komlev, Vladimir S. [4 ]
Popov, Vladimir K. [1 ]
机构
[1] Russian Acad Sci, Inst Photon Technol, Fed Sci Res Ctr Crystallog & Photon, Moscow 108840, Russia
[2] Res Ctr Med Genet, Moscow 115478, Russia
[3] Cent Res Inst Dent & Maxillofacial Surg, Moscow 119021, Russia
[4] Russian Acad Sci, AA Baikov Inst Met & Mat Sci, Moscow 119334, Russia
基金
俄罗斯基础研究基金会;
关键词
gene-activated scaffolds; 3D printing; sodium alginate hydrogel; plasmid DNA; PLASMID DNA; POLYETHYLENIMINE; DEGRADATION; VERSATILE;
D O I
10.3390/gels8070421
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Gene therapy is one of the most promising approaches in regenerative medicine to restore damaged tissues of various types. However, the ability to control the dose of bioactive molecules in the injection site can be challenging. The combination of genetic constructs, bioresorbable material, and the 3D printing technique can help to overcome these difficulties and not only serve as a microenvironment for cell infiltration but also provide localized gene release in a more sustainable way to induce effective cell differentiation. Herein, the cell transfection with plasmid DNA directly incorporated into sodium alginate prior to 3D printing was investigated both in vitro and in vivo. The 3D cryoprinting ensures pDNA structure integrity and safety. 3D printed gene-activated scaffolds (GAS) mediated HEK293 transfection in vitro and effective synthesis of model EGFP protein in vivo, thereby allowing the implementation of the developed GAS in future tissue engineering applications.
引用
收藏
页数:17
相关论文
共 39 条
[1]  
Aescht E, 2010, Romeis Mikroskopische Technik, DOI [10.1007/978-3-8274-2254-5, DOI 10.1007/978-3-8274-2254-5]
[2]  
Aggarwal R., Int J Pharm Sci Nanotechnol, DOI [10.37285//ijpsn. 2019.12.6.1, DOI 10.37285//IJPSN.2019.12.6.1]
[3]   3D Printed Drug Delivery Systems Based on Natural Products [J].
Aguilar-de-Leyva, Angela ;
Linares, Vicente ;
Casas, Marta ;
Caraballo, Isidoro .
PHARMACEUTICS, 2020, 12 (07) :1-20
[4]   3D Printed Gene-activated Octacalcium Phosphate Implants for Large Bone Defects Engineering [J].
Bozo, Ilya I. ;
Deev, Roman, V ;
Smirnov, Igor, V ;
Fedotov, Alexander Yu ;
Popov, Vladimir K. ;
Mironov, Anton, V ;
Mironova, Olga A. ;
Gerasimenko, Alexander Yu ;
Komlev, Vladimir S. .
INTERNATIONAL JOURNAL OF BIOPRINTING, 2020, 6 (03) :93-109
[5]   Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches-An Overview [J].
Carballo-Pedrares, Natalia ;
Fuentes-Boquete, Isaac ;
Diaz-Prado, Silvia ;
Rey-Rico, Ana .
PHARMACEUTICS, 2020, 12 (08) :1-21
[6]   Scaffold-mediated delivery for non-viral mRNA vaccines [J].
Chen, Ruying ;
Zhang, Hong ;
Yan, Jingxuan ;
Bryers, James D. .
GENE THERAPY, 2018, 25 (08) :556-567
[7]   Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine [J].
Chung, Justin J. ;
Im, Heejung ;
Kim, Soo Hyun ;
Park, Jong Woong ;
Jung, Youngmee .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[8]   Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree [J].
Dodero, Andrea ;
Pianella, Lara ;
Vicini, Silvia ;
Alloisio, Marina ;
Ottonelli, Massimo ;
Castellano, Maila .
EUROPEAN POLYMER JOURNAL, 2019, 118 :586-594
[9]   Transcription of plasmid DNA:: Influence of plasmid DNA/polyethylenimine complex formation [J].
Honoré, I ;
Grosse, S ;
Frison, N ;
Favatier, F ;
Monsigny, M ;
Fajac, I .
JOURNAL OF CONTROLLED RELEASE, 2005, 107 (03) :537-546
[10]  
HOOVER RL, 1980, J CELL SCI, V45, P73