MicroRNAs as new therapeutic targets and tools in cancer

被引:96
作者
Gandellini, Paolo [1 ]
Profumo, Valentina [1 ]
Folini, Marco [1 ]
Zaffaroni, Nadia [1 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori, Mol Pharmacol Unit, Dept Expt Oncol & Mol Med, I-20133 Milan, Italy
关键词
adenovirus; antagomir; cancer; drug response; locked nucleic acid; microRNA; miRNA replacement; HUMAN OVARIAN-CANCER; HUMAN LUNG CANCERS; IN-VIVO; DOWN-REGULATION; ANTISENSE INHIBITION; MULTIDRUG-RESISTANCE; INDUCED APOPTOSIS; PROSTATE-CANCER; CELL-GROWTH; EXPRESSION;
D O I
10.1517/14728222.2011.550878
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that negatively regulate gene expression at the post-transcriptional level. Several studies have provided evidence that abnormal expression of selected miRNAs is associated with the pathogenesis of cancer. As they can act as either oncogenes or tumor suppressors, miRNAs have been proposed as potential new therapeutic targets or tools for cancer therapy. Areas covered: This paper reviews a significant body of the experimental data collected to date which indicate that specific miRNA inhibition or replacement can successfully modify the proliferative and invasive properties of tumor cells. It discusses recent evidence that has also revealed a direct involvement of miRNAs in drug resistance, underlying an entirely new mechanism by which tumor cells may be refractory to the treatment with cytotoxic agents. Based on these findings, in the therapeutic setting, interference with cancer-specific miRNAs could be exploited not only to produce a direct anticancer effect but also to improve the response of tumor cells to conventional treatments. Expert opinion: Overall, manipulation of miRNA functions, either by mimicking or inhibiting them, is emerging as a highly promising therapeutic strategy. However, before miRNA-based therapeutics enters the clinical armamentarium, important issues concerning specific delivery to cells/tissues of interest, safety as well as pharmacokinetic profiles needs to be addressed.
引用
收藏
页码:265 / 279
页数:15
相关论文
共 83 条
[1]   MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing [J].
Ambros, V .
CELL, 2003, 113 (06) :673-676
[2]   The Promise of MicroRNA Replacement Therapy [J].
Bader, Andreas G. ;
Brown, David ;
Winkler, Matthew .
CANCER RESEARCH, 2010, 70 (18) :7027-7030
[3]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities [J].
Bonci, Desiree ;
Coppola, Valeria ;
Musumeci, Maria ;
Addario, Antonio ;
Giuffrida, Raffaella ;
Memeo, Lorenzo ;
D'Urso, Leonardo ;
Pagliuca, Alfredo ;
Biffoni, Mauro ;
Labbaye, Catherine ;
Bartucci, Monica ;
Muto, Giovanni ;
Peschle, Cesare ;
De Maria, Ruggero .
NATURE MEDICINE, 2008, 14 (11) :1271-1277
[6]   Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan [J].
Boni, V. ;
Zarate, R. ;
Villa, J. C. ;
Bandres, E. ;
Gomez, M. A. ;
Maiello, E. ;
Garcia-Foncillas, J. ;
Aranda, E. .
PHARMACOGENOMICS JOURNAL, 2011, 11 (06) :429-436
[7]   Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia [J].
Calin, GA ;
Dumitru, CD ;
Shimizu, M ;
Bichi, R ;
Zupo, S ;
Noch, E ;
Aldler, H ;
Rattan, S ;
Keating, M ;
Rai, K ;
Rassenti, L ;
Kipps, T ;
Negrini, M ;
Bullrich, F ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15524-15529
[8]   Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J].
Calin, GA ;
Sevignani, C ;
Dan Dumitru, C ;
Hyslop, T ;
Noch, E ;
Yendamuri, S ;
Shimizu, M ;
Rattan, S ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2999-3004
[9]   MicroRNA signatures in human cancers [J].
Calin, George A. ;
Croce, Carlo M. .
NATURE REVIEWS CANCER, 2006, 6 (11) :857-866
[10]   MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells [J].
Chan, JA ;
Krichevsky, AM ;
Kosik, KS .
CANCER RESEARCH, 2005, 65 (14) :6029-6033