Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion

被引:74
作者
Khobragade, Nidhi [1 ]
Sikdar, Koushik [1 ]
Kumar, Binod [1 ]
Bera, Supriya [2 ]
Roy, Debdas [1 ]
机构
[1] NIFFT, Dept Mat & Met Engn, Ranchi 834003, Jharkhand, India
[2] NIT, Dept Mat & Met Engn, Durgapur 713209, WB, India
关键词
High pressure torsion; Copper; Graphene; Dislocations; Hardness; Electrical conductivity; METAL-MATRIX-COMPOSITES; ENHANCED STRENGTH; MICROSTRUCTURE; CONDUCTIVITY; SIZE; DEFORMATION; IMPROVEMENT; EVOLUTION; ENERGY; ALLOY;
D O I
10.1016/j.jallcom.2018.10.139
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene reinforced Cu matrix composite was fabricated by consolidating mechanically mixed powder blend to 98% theoretical density by High Pressure Torsion (HPT). Microstructural characterization by scanning electron microscopy (SEM) elicits even distribution of the reinforcement phase into the matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirms nanocrystalline microstructure and strong interfacial bonding between Cu and graphene. Addition of 10 wt % graphene yields maximum hardness (similar to 2.67 GPa) and Young's modulus (similar to 102.03 GPa). The increment in strength was attributed to the microstructural refinement and dislocation pinning at the strong matrix-reinforcement interface. The electrical conductivity of the Cu- 10 wt% graphene composite was found to be similar to 87% IACS. Results indicated that HPT consolidation is an efficient mean for synthesizing Cu-graphene composite with improved strength (similar to 2 times higher hardness than pure Cu processed under similar condition) with negotiable conductivity. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 70 条
[1]   Effect of high-pressure torsion on the microstructure and strengthening mechanisms of hot-consolidated Cu-CNT nanocomposite [J].
Akbarpour, M. R. ;
Farvizi, M. ;
Lee, D. J. ;
Rezaei, H. ;
Kim, H. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 638 :289-295
[2]  
[Anonymous], GRAPHENE REINFORCED
[3]  
[Anonymous], P 3 BIENN CARB C
[4]   An investigation on the effect of sintering mode on various properties of copper-graphene metal matrix composite [J].
Ayyappadas, C. ;
Muthuchamy, A. ;
Annamalai, A. Raja ;
Agrawal, Dinesh K. .
ADVANCED POWDER TECHNOLOGY, 2017, 28 (07) :1760-1768
[5]   Carbon nanotube reinforced metal matrix composites - a review [J].
Bakshi, S. R. ;
Lahiri, D. ;
Agarwal, A. .
INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (01) :41-64
[6]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[7]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[8]   Rapid colorimetric analysis of graphene on copper [J].
Candadai, Aaditya A. ;
Kumar, Anurag ;
Alrefae, Majed A. ;
Zemlyanov, Dimitry ;
Fisher, Timothy S. .
CORROSION SCIENCE, 2018, 138 :319-325
[9]   Grain size stabilization and strengthening of cryomilled nanostructured Cu 12 at% Al alloy [J].
Chakravarty, Somraj ;
Sikdar, Koushik ;
Singh, Shudhansu S. ;
Roy, Debdas ;
Koch, Carl C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 716 :197-203
[10]   Effects of graphene content on the microstructure and properties of copper matrix composites [J].
Chen, Fanyan ;
Ying, Jiamin ;
Wang, Yifei ;
Du, Shiyu ;
Liu, Zhaoping ;
Huang, Qing .
CARBON, 2016, 96 :836-842