Low-cost sensor networks and land-use regression: Interpolating nitrogen dioxide concentration at high temporal and spatial resolution in Southern California

被引:28
作者
Weissert, Lena [1 ,2 ,3 ,4 ]
Alberti, Kyle [3 ]
Miles, Elaine [3 ]
Miskell, Georgia [1 ,2 ,6 ]
Feenstra, Brandon [5 ]
Henshaw, Geoff S. [3 ]
Papapostolou, Vasileios [5 ]
Patel, Hamesh [3 ]
Polidori, Andrea [5 ]
Salmond, Jennifer A. [4 ]
Williams, David E. [1 ,2 ]
机构
[1] Univ Auckland, Sch Chem Sci, Private Bag 92019, Auckland 1142, New Zealand
[2] Univ Auckland, MacDiarmid Inst Adv Mat & Nanotechnol, Private Bag 92019, Auckland 1142, New Zealand
[3] Aeroqual Ltd, 460 Rosebank Rd, Auckland 1026, New Zealand
[4] Univ Auckland, Sch Environm, Private Bag 92019, Auckland 1142, New Zealand
[5] South Coast Air Qual Management Dist, 21865 Copley Dr, Diamond Bar, CA 91765 USA
[6] Trustpower, 108 Durham St, Tauranga, New Zealand
关键词
Air quality sensor network; Land-use regression; Nitrogen dioxide; Ozone; AIR-QUALITY; POLLUTION; MODELS; EXPOSURE; VARIABILITY;
D O I
10.1016/j.atmosenv.2020.117287
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of low-cost sensors and novel calibration algorithms offer new opportunities to supplement existing regulatory networks to measure air pollutants at a high spatial resolution and at hourly and sub-hourly timescales. We use a random forest model on data from a network of low-cost sensors to describe the effect of land use features on local-scale air quality, extend this model to describe the hourly-scale variation of air quality at high spatial resolution, and show that deviations from the model can be used to identify particular conditions and locations where air quality differs from the expected land-use effect. The conditions and locations under which deviations were detected conform to expectations based on general experience.
引用
收藏
页数:10
相关论文
共 41 条
  • [1] Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan
    Araki, Shin
    Shima, Masayuki
    Yamamoto, Kouhei
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 634 : 1269 - 1277
  • [2] Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project
    Beelen, Rob
    Hoek, Gerard
    Vienneau, Danielle
    Eeftens, Marloes
    Dimakopoulou, Konstantina
    Pedeli, Xanthi
    Tsai, Ming-Yi
    Kunzli, Nino
    Schikowski, Tamara
    Marcon, Alessandro
    Eriksen, Kirsten T.
    Raaschou-Nielsen, Ole
    Stephanou, Euripides
    Patelarou, Evridiki
    Lanki, Timo
    Yli-Tuomi, Tarja
    Declercq, Christophe
    Falq, Gregoire
    Stempfelet, Morgane
    Birk, Matthias
    Cyrys, Josef
    von Klot, Stephanie
    Nador, Gizella
    Varro, Mihaly Janos
    Dedele, Audrius
    Grazuleviciene, Regina
    Moelter, Anna
    Lindley, Sarah
    Madsen, Christian
    Cesaroni, Giulia
    Ranzi, Andrea
    Badaloni, Chiara
    Hoffmann, Barbara
    Nonnemacher, Michael
    Kraemer, Ursula
    Kuhlbusch, Thomas
    Cirach, Marta
    de Nazelle, Audrey
    Nieuwenhuijsen, Mark
    Bellander, Tom
    Korek, Michal
    Olsson, David
    Stromgren, Magnus
    Dons, Evi
    Jerrett, Michael
    Fischer, Paul
    Wang, Meng
    Brunekreef, Bert
    de Hoogh, Kees
    [J]. ATMOSPHERIC ENVIRONMENT, 2013, 72 : 10 - 23
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches
    Brokamp, Cole
    Jandarov, Roman
    Rao, M. B.
    LeMasters, Grace
    Ryan, Patrick
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 151 : 1 - 11
  • [5] *CALTR, 2010, CALTR GIS DAT TRUCK
  • [6] Candan Tang Scrucca Ziem Lescarbeau Benesty Kenkel Mayer Cooper Engelhardt Keefer Williams Weston Wing Kuhn Tyler Yuan Andrew Michael Zachary Allan Andre M. Contributions from Jed, 2019, R package version 6.0-84
  • [7] Investigating the Use Of Portable Air Pollution Sensors to Capture the Spatial Variability Of Traffic-Related Air Pollution
    Cavellin, Laure Deville
    Weichenthal, Scott
    Tack, Ryan
    Ragettli, Martina S.
    Smargiassi, Audrey
    Hatzopoulou, Marianne
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (01) : 313 - 320
  • [8] A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide
    Chen, Jie
    de Hoogh, Kees
    Gulliver, John
    Hoffmann, Barbara
    Hertel, Ole
    Ketzel, Matthias
    Bauwelinck, Mariska
    van Donkelaar, Aaron
    Hvidtfeldt, Ulla A.
    Katsouyanni, Klea
    Janssen, Nicole A. H.
    Martin, Randall V.
    Samoli, Evangelia
    Schwartz, Per E.
    Stafoggia, Massimo
    Bellander, Tom
    Strak, Maciek
    Wolf, Kathrin
    Vienneau, Danielle
    Vermeulen, Roel
    Brunekreef, Bert
    Hoek, Gerard
    [J]. ENVIRONMENT INTERNATIONAL, 2019, 130
  • [9] Clements P, 2017, ROUTL RES CULT MEDIA, P17
  • [10] In Situ Calibration Algorithms for Environmental Sensor Networks: A Review
    Delaine, Florentin
    Lebental, Berengere
    Rivano, Herve
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (15) : 5968 - 5978