Effect of carbon content on selection of slip system during uniaxial tensile deformation of lath martensite

被引:25
作者
Ryou, K. H. [1 ]
Nambu, S. [1 ]
Koseki, T. [1 ]
机构
[1] Univ Tokyo, Dept Mat Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2020年 / 777卷
关键词
Electron-backscattering diffraction; Martensitic steel; Deformation behavior; MECHANICAL-PROPERTIES; BLOCK BOUNDARY; STEEL; BEHAVIOR; MORPHOLOGY; STRENGTH; CRYSTALLOGRAPHY; MICROSTRUCTURE; SUBSTRUCTURE; PLASTICITY;
D O I
10.1016/j.msea.2020.139090
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The deformation behavior of lath martensite in medium-carbon steel was investigated using a scanning electron microscope and electron backscattering diffraction techniques and compared with that of low-carbon steel. There was a significant difference in the occurrence behavior of slip bands between the two grades of steel. In particular, the slip band occurrence is concentrated on specific type in the case of medium-carbon steel. About the origin of this particular phenomenon, it is indicated that the difference in the formation behavior of slip band results from the difference in microstructures due to different carbon content. The noticeable difference in the microstructure was the block width, which affected the selection of the slip system. The block boundary constraint obtained from the block width could be the key factor in the selection of a slip system for martensite that has a relatively higher-carbon content.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Microstructural heterogeneity and its relationship to the strength of martensite [J].
Badinier, G. ;
Sinclair, C. W. ;
Sauvage, X. ;
Wang, X. ;
Bylik, V. ;
Goune, M. ;
Danoix, F. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 638 :329-339
[2]   Plasticity of lath martensite by sliding of substructure boundaries [J].
Du, C. ;
Hoefnagels, J. P. M. ;
Vaes, R. ;
Geers, M. G. D. .
SCRIPTA MATERIALIA, 2016, 120 :37-40
[3]   Block and sub-block boundary strengthening in lath martensite [J].
Du, C. ;
Hoefnagels, J. P. M. ;
Vaes, R. ;
Geers, M. G. D. .
SCRIPTA MATERIALIA, 2016, 116 :117-121
[4]   Microstructures and hardness of as-quenched martensites (0.1-0.5%C) [J].
Hutchinson, Bevis ;
Hagstrom, Joacim ;
Karlsson, Oskar ;
Lindell, David ;
Tornberg, Malm ;
Lindberg, Fredrik ;
Thuvander, Mattias .
ACTA MATERIALIA, 2011, 59 (14) :5845-5858
[5]   Fracture elongation of brittle/ductile multilayered steel composites with a strong interface [J].
Inoue, Junya ;
Nambu, Shoichi ;
Ishimoto, Yoshitake ;
Koseki, Toshihiko .
SCRIPTA MATERIALIA, 2008, 59 (10) :1055-1058
[6]   Slip band formation at free surface of lath martensite in low carbon steel [J].
Inoue, Junya ;
Sadeghi, Alireza ;
Koseki, Toshihiko .
ACTA MATERIALIA, 2019, 165 :129-141
[7]   Measurement of Strain Distribution of Lath Martensite Microstructure during Tensile Deformation [J].
Ishimoto, Y. ;
Michiuchi, M. ;
Nambu, S. ;
Asakura, K. ;
Inoue, J. ;
Koseki, T. .
JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2009, 73 (09) :720-727
[8]  
Khlebnikova Yu. V., 1998, Physics of Metals and Metallography, V86, P394
[9]   The microstructure of lath martensite in quenched 9Ni steel [J].
Kinney, C. C. ;
Pytlewski, K. R. ;
Khachaturyan, A. G. ;
Morris, J. W., Jr. .
ACTA MATERIALIA, 2014, 69 :372-385
[10]   Crystallographic features of lath martensite in low-carbon steel [J].
Kitahara, H ;
Ueji, R ;
Tsuji, N ;
Minamino, Y .
ACTA MATERIALIA, 2006, 54 (05) :1279-1288