LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data

被引:14
作者
Lin, Bingqing [1 ,3 ]
Zhang, Li-Feng [1 ]
Chen, Xin [2 ]
机构
[1] Nanyang Technol Univ, Sch Biol Sci, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[3] Shenzhen Univ, Inst Stat Sci, Shenzhen 518060, Peoples R China
来源
BMC GENOMICS | 2014年 / 15卷
基金
英国医学研究理事会;
关键词
Differential expression; Nonparametric; RNA-seq;
D O I
10.1186/1471-2164-15-S10-S7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: With the advances in high-throughput DNA sequencing technologies, RNA-seq has rapidly emerged as a powerful tool for the quantitative analysis of gene expression and transcript variant discovery. In comparative experiments, differential expression analysis is commonly performed on RNA-seq data to identify genes/features that are differentially expressed between biological conditions. Most existing statistical methods for differential expression analysis are parametric and assume either Poisson distribution or negative binomial distribution on gene read counts. However, violation of distributional assumptions or a poor estimation of parameters often leads to unreliable results. Results: In this paper, we introduce a new nonparametric approach called LFCseq that uses log fold changes as a differential expression test statistic. To test each gene for differential expression, LFCseq estimates a null probability distribution of count changes from a selected set of genes with similar expression strength. In contrast, the nonparametric NOISeq approach relies on a null distribution estimated from all genes within an experimental condition regardless of their expression levels. Conclusion: Through extensive simulation study and RNA-seq real data analysis, we demonstrate that the proposed approach could well rank the differentially expressed genes ahead of non-differentially expressed genes, thereby achieving a much improved overall performance for differential expression analysis.
引用
收藏
页数:9
相关论文
共 27 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Integrative analysis of the melanoma transcriptome [J].
Berger, Michael F. ;
Levin, Joshua Z. ;
Vijayendran, Krishna ;
Sivachenko, Andrey ;
Adiconis, Xian ;
Maguire, Jared ;
Johnson, Laura A. ;
Robinson, James ;
Verhaak, Roel G. ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Ziaugra, Liuda ;
Cibulskis, Kristian ;
Laine, Elisabeth ;
Barretina, Jordi ;
Winckler, Wendy ;
Fisher, David E. ;
Getz, Gad ;
Meyerson, Matthew ;
Jaffe, David B. ;
Gabriel, Stacey B. ;
Lander, Eric S. ;
Dummer, Reinhard ;
Gnirke, Andreas ;
Nusbaum, Chad ;
Garraway, Levi A. .
GENOME RESEARCH, 2010, 20 (04) :413-427
[4]   Next-generation sequencing in the clinic: are we ready? [J].
Biesecker, Leslie G. ;
Burke, Wylie ;
Kohane, Isaac ;
Plon, Sharon E. ;
Zimmern, Ron .
NATURE REVIEWS GENETICS, 2012, 13 (11) :818-824
[5]   Evaluating Gene Expression in C57BL/6J and DBA/2J Mouse Striatum Using RNA-Seq and Microarrays [J].
Bottomly, Daniel ;
Walter, Nicole A. R. ;
Hunter, Jessica Ezzell ;
Darakjian, Priscila ;
Kawane, Sunita ;
Buck, Kari J. ;
Searles, Robert P. ;
Mooney, Michael ;
McWeeney, Shannon K. ;
Hitzemann, Robert .
PLOS ONE, 2011, 6 (03)
[6]   Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments [J].
Bullard, James H. ;
Purdom, Elizabeth ;
Hansen, Kasper D. ;
Dudoit, Sandrine .
BMC BIOINFORMATICS, 2010, 11
[7]  
Griffith M, 2010, NAT METHODS, V7, P843, DOI [10.1038/NMETH.1503, 10.1038/nmeth.1503]
[8]   baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data [J].
Hardcastle, Thomas J. ;
Kelly, Krystyna A. .
BMC BIOINFORMATICS, 2010, 11
[9]   EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments [J].
Leng, Ning ;
Dawson, John A. ;
Thomson, James A. ;
Ruotti, Victor ;
Rissman, Anna I. ;
Smits, Bart M. G. ;
Haag, Jill D. ;
Gould, Michael N. ;
Stewart, Ron M. ;
Kendziorski, Christina .
BIOINFORMATICS, 2013, 29 (08) :1035-1043
[10]   Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data [J].
Li, Jun ;
Tibshirani, Robert .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (05) :519-536