Quantum-Classical Image Processing for Scene Classification

被引:7
作者
Chalumuri, Avinash [1 ]
Kune, Raghavendra [2 ]
Kannan, S. [3 ]
Manoj, B. S. [1 ]
机构
[1] Indian Inst Space Sci & Technol, Thiruvananthapuram 695547, Kerala, India
[2] Adv Data Proc Res Inst, Secunderabad 500009, India
[3] ISRO Inertial Syst Unit, Thiruvananthapuram 695013, Kerala, India
关键词
Qubit; Quantum circuit; Convolutional neural networks; Computational modeling; Training; Sensors; Logic gates; Sensor signal processing; hybrid model; quantum-classical computing; scene classification; sensor signal processing;
D O I
10.1109/LSENS.2022.3173253
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep-learning-based convolutional neural network (CNN) models are prominent in processing and analyzing sensor signal data, such as images for classification. Data augmentation is a powerful technique used in training such models to avoid overfitting and to improve accuracy. This letter proposes a data augmentation technique using a quantum circuit for image data. The proposed quantum circuit is suitable to implement on real hardware provided by the IBM Quantum Experience platform. In comparison with other classical data augmentation techniques, the proposed technique increased the prediction accuracy of the CNN from 68.65 to 76.03%. However, CNN models for image classification use many parameters during the training process. Quantum computers can efficiently handle large-scale data inputs using qubits for information processing. Hence, we also propose a hybrid quantum-classical convolutional neural network model (HQCNN) for scene classification. The proposed model uses a combination of CNN layers and quantum layers to process images. The proposed HQCNN reduces parameters used for training due to the use of quantum layers in the model. Our experimental results show that the proposed HQCNN can classify the scenes in the UC Merced land-use dataset with an accuracy of 85.28% compared to the other models.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 25 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[3]  
Bergholm Ville, 2018, PennyLane: Automatic differentiation of hybrid quantum-classical computations
[4]   TRAINING WITH NOISE IS EQUIVALENT TO TIKHONOV REGULARIZATION [J].
BISHOP, CM .
NEURAL COMPUTATION, 1995, 7 (01) :108-116
[5]   Quantum-enhanced deep neural network architecture for image scene classification [J].
Chalumuri, Avinash ;
Kune, Raghavendra ;
Kannan, S. ;
Manoj, B. S. .
QUANTUM INFORMATION PROCESSING, 2021, 20 (11)
[6]   A hybrid classical-quantum approach for multi-class classification [J].
Chalumuri, Avinash ;
Kune, Raghavendra ;
Manoj, B. S. .
QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
[7]   Data Augmentation in Deep Learning-Based Fusion of Depth and Inertial Sensing for Action Recognition [J].
Dawar, Neha ;
Ostadabbas, Sarah ;
Kehtarnavaz, Nasser .
IEEE SENSORS LETTERS, 2019, 3 (01)
[8]   IBM Q Experience as a versatile experimental testbed for simulating open quantum systems [J].
Garcia-Perez, Guillermo ;
Rossi, Matteo A. C. ;
Maniscalco, Sabrina .
NPJ QUANTUM INFORMATION, 2020, 6 (01)
[9]   Deep Convolutional Neural Network for Double-Identity Fingerprint Detection [J].
Goel, Ishank ;
Puhan, Niladri B. ;
Mandal, Bappaditya .
IEEE SENSORS LETTERS, 2020, 4 (05)
[10]   A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection [J].
Gu, Yating ;
Wang, Yantian ;
Li, Yansheng .
APPLIED SCIENCES-BASEL, 2019, 9 (10)