An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum

被引:39
作者
Cabrera, Juan J. [1 ]
Salas, Ana [1 ]
Torres, Maria J. [1 ]
Bedmar, Eulogio J. [1 ]
Richardson, David J. [2 ,3 ]
Gates, Andrew J. [2 ,3 ]
Delgado, Maria J. [1 ]
机构
[1] CSIC, Estn Expt Zaidin, POB 419, E-18080 Granada, Spain
[2] Univ E Anglia, Norwich Res Pk, Ctr Mol & Struct Biochem, Norwich NR4 7TJ, Norfolk, England
[3] Univ E Anglia, Norwich Res Pk, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England
基金
英国生物技术与生命科学研究理事会;
关键词
bacterial denitrification; bacterial haemoglobin; nitrate reduction; nitric oxide reductase; nitrite reduction; NITROSATIVE STRESS; CAMPYLOBACTER-JEJUNI; SOYBEAN NODULES; NAPEDABC GENES; CELL BIOLOGY; REDUCTASE; DENITRIFICATION; PROTECTION; GROWTH; ROLES;
D O I
10.1042/BJ20150880
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rhizobia are recognized to establish N-2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3-) or nitrite (NO2-) as sole nitrogen source. Unlike related bacteria that assimilate NO3-, genes encoding the assimilatory NO3- reductase (nasC) and NO2- reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3- transporter, a major facilitator family NO3-/NO2- transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3-/NO2--responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3- assimilation and that growth with NO3-, but not NO2- requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3- assimilation. Additional experiments reveal NasT is required for NO3--responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3-/NO2- reductase pathway.
引用
收藏
页码:297 / 309
页数:13
相关论文
共 63 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]   Interactions of no with hemoglobin: From microbes to man [J].
Angelo, Michael ;
Hausladen, Alfred ;
Singel, David J. ;
Stamler, Jonathan S. .
GLOBINS AND OTHER NITRIC OXIDE-REACTIVE PROTEINS, PT A, 2008, 436 :131-168
[3]  
Bates B.C., 2008, Climate Change and Water, Technical Paper of the Intergovern-Mental Panel on Climate Change, DOI [10.1016/j.jmb.2010.08.039, DOI 10.1016/J.JMB.2010.08.039]
[4]  
Bedmar EJ, 2014, BENEFICIAL PLANT-MICROBIAL INTERACTIONS: ECOLOGY AND APPLICATIONS, P164
[5]   The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum [J].
Bedmar, EJ ;
Robles, EF ;
Delgado, MJ .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :141-144
[6]  
Bergersen FJ, 1977, BIOLOGY, P519
[7]   The nitric oxide response in plant-associated endosymbiotic bacteria [J].
Cabrera, Juan J. ;
Sanchez, Cristina ;
Gates, Andrew J. ;
Bedmar, Eulogio J. ;
Mesa, Socorro ;
Richardson, David J. ;
Delgado, Maria J. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2011, 39 :1880-1885
[8]   N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels [J].
Crutzen, P. J. ;
Mosier, A. R. ;
Smith, K. A. ;
Winiwarter, W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (02) :389-395
[9]  
Delgado MJ, 2007, BIOLOGY OF THE NITROGEN CYCLE, P83, DOI 10.1016/B978-044452857-5.50007-2
[10]   The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration [J].
Delgado, MJ ;
Bonnard, N ;
Tresierra-Ayala, A ;
Bedmar, EJ ;
Müller, P .
MICROBIOLOGY-SGM, 2003, 149 :3395-3403