Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions

被引:26
作者
Brendle, Simon [1 ]
Choi, Kyeongsu
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SINGULARITIES; BEHAVIOR;
D O I
10.2140/gt.2021.25.2195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider noncompact ancient solutions to the mean curvature flow in Rn+1 (n >= 3) which are strictly convex, uniformly two-convex, and noncollapsed. We prove that such an ancient solution is a rotationally symmetric translating soliton.
引用
收藏
页码:2195 / 2234
页数:40
相关论文
共 16 条
[1]   UNIQUE ASYMPTOTICS OF ANCIENT CONVEX MEAN CURVATURE FLOW SOLUTIONS [J].
Angenent, Sigurd ;
Daskalopoulos, Panagiota ;
Sesum, Natasa .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 111 (03) :381-455
[2]  
Brendle S, 2019, INVENT MATH, V217, P35, DOI 10.1007/s00222-019-00859-4
[3]   Generic mean curvature flow I; generic singularities [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2012, 175 (02) :755-833
[4]   INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE [J].
ECKER, K ;
HUISKEN, G .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :547-569
[5]  
Ecker K, 2004, PROGR NONLINEAR DIFF, V57, DOI DOI 10.1007/978-0-8176-8210-1
[6]  
HAMILTON RS, 1995, J DIFFER GEOM, V41, P215
[7]   MEAN CURVATURE FLOW WITH SURGERY [J].
Haslhofer, Robert ;
Kleiner, Bruce .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (09) :1591-1626
[8]   Mean Curvature Flow of Mean Convex Hypersurfaces [J].
Haslhofer, Robert ;
Kleiner, Bruce .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (03) :511-546
[9]  
HUISKEN G, 1990, J DIFFER GEOM, V31, P285
[10]   Mean curvature flow with surgeries of two-convex hypersurfaces [J].
Huisken, Gerhard ;
Sinestrari, Carlo .
INVENTIONES MATHEMATICAE, 2009, 175 (01) :137-221