Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions

被引:21
作者
Brendle, Simon [1 ]
Choi, Kyeongsu
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SINGULARITIES; BEHAVIOR;
D O I
10.2140/gt.2021.25.2195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider noncompact ancient solutions to the mean curvature flow in Rn+1 (n >= 3) which are strictly convex, uniformly two-convex, and noncollapsed. We prove that such an ancient solution is a rotationally symmetric translating soliton.
引用
收藏
页码:2195 / 2234
页数:40
相关论文
共 16 条
  • [1] UNIQUE ASYMPTOTICS OF ANCIENT CONVEX MEAN CURVATURE FLOW SOLUTIONS
    Angenent, Sigurd
    Daskalopoulos, Panagiota
    Sesum, Natasa
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 111 (03) : 381 - 455
  • [2] Brendle S, 2019, INVENT MATH, V217, P35, DOI 10.1007/s00222-019-00859-4
  • [3] Generic mean curvature flow I; generic singularities
    Colding, Tobias H.
    Minicozzi, William P., II
    [J]. ANNALS OF MATHEMATICS, 2012, 175 (02) : 755 - 833
  • [4] INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE
    ECKER, K
    HUISKEN, G
    [J]. INVENTIONES MATHEMATICAE, 1991, 105 (03) : 547 - 569
  • [5] Ecker K, 2004, PROGR NONLINEAR DIFF, V57, DOI DOI 10.1007/978-0-8176-8210-1
  • [6] HAMILTON RS, 1995, J DIFFER GEOM, V41, P215
  • [7] MEAN CURVATURE FLOW WITH SURGERY
    Haslhofer, Robert
    Kleiner, Bruce
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (09) : 1591 - 1626
  • [8] Mean Curvature Flow of Mean Convex Hypersurfaces
    Haslhofer, Robert
    Kleiner, Bruce
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (03) : 511 - 546
  • [9] HUISKEN G, 1990, J DIFFER GEOM, V31, P285
  • [10] Mean curvature flow with surgeries of two-convex hypersurfaces
    Huisken, Gerhard
    Sinestrari, Carlo
    [J]. INVENTIONES MATHEMATICAE, 2009, 175 (01) : 137 - 221